IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp1362-1371.html
   My bibliography  Save this article

Quantitative evaluation of the impact of cloud transmittance and cloud velocity on the accuracy of short-term DNI forecasts

Author

Listed:
  • Li, Mengying
  • Chu, Yinghao
  • Pedro, Hugo T.C.
  • Coimbra, Carlos F.M.

Abstract

Ground based sky imaging and irradiance sensors are used to quantitatively evaluate the impact of cloud transmittance and cloud velocity on the accuracy of short-term direct normal irradiance (DNI) forecasts. Eight representative partly-cloudy days are used as an evaluation dataset. Results show that incorporating real-time sky and cloud transmittances as inputs reduces the root mean square error (RMSE) of forecasts of both the Deterministic model (Det) (16.3%∼ 17.8% reduction) and the multi-layer perceptron network model (MLP) (0.8% ∼ 6.2% reduction). Four computer vision methods: the particle image velocimetry method, the optical flow method, the x-correlation method and the scale-invariant feature transform method have accuracies of 83.9%, 83.5%, 79.2% and 60.9% in deriving cloud velocity, with respect to manual detection. Analysis also shows that the cloud velocity has significant impact on the accuracy of DNI forecasts: underestimating the cloud velocity magnitude by 50% results in 30.2% (Det) and 24.2% (MLP) increase of forecast RMSE; a 50% overestimate results in 7.0% (Det) and 8.4% (MLP) increase of RMSE; a ±30∘ deviation of cloud velocity direction increases the forecast RMSE by 6.2% (Det) and 6.6% (MLP).

Suggested Citation

  • Li, Mengying & Chu, Yinghao & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2016. "Quantitative evaluation of the impact of cloud transmittance and cloud velocity on the accuracy of short-term DNI forecasts," Renewable Energy, Elsevier, vol. 86(C), pages 1362-1371.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:1362-1371
    DOI: 10.1016/j.renene.2015.09.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115303372
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Younes, S. & Muneer, T., 2007. "Clear-sky classification procedures and models using a world-wide data-base," Applied Energy, Elsevier, vol. 84(6), pages 623-645, June.
    2. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    3. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
    4. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
    2. Niu, Yinsen & Song, Jifeng & Zou, Lianglin & Yan, Zixuan & Lin, Xilong, 2024. "Cloud detection method using ground-based sky images based on clear sky library and superpixel local threshold," Renewable Energy, Elsevier, vol. 226(C).
    3. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    4. Wang, Fei & Lu, Xiaoxing & Mei, Shengwei & Su, Ying & Zhen, Zhao & Zou, Zubing & Zhang, Xuemin & Yin, Rui & Duić, Neven & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "A satellite image data based ultra-short-term solar PV power forecasting method considering cloud information from neighboring plant," Energy, Elsevier, vol. 238(PC).
    5. Feng, Cong & Zhang, Jie & Zhang, Wenqi & Hodge, Bri-Mathias, 2022. "Convolutional neural networks for intra-hour solar forecasting based on sky image sequences," Applied Energy, Elsevier, vol. 310(C).
    6. Chen, Shanlin & Li, Mengying, 2022. "Improved turbidity estimation from local meteorological data for solar resourcing and forecasting applications," Renewable Energy, Elsevier, vol. 189(C), pages 259-272.
    7. Chu, Yinghao & Coimbra, Carlos F.M., 2017. "Short-term probabilistic forecasts for Direct Normal Irradiance," Renewable Energy, Elsevier, vol. 101(C), pages 526-536.
    8. Paulescu, Marius & Paulescu, Eugenia, 2019. "Short-term forecasting of solar irradiance," Renewable Energy, Elsevier, vol. 143(C), pages 985-994.
    9. Chen, Shanlin & Li, Chengxi & Xie, Yuying & Li, Mengying, 2023. "Global and direct solar irradiance estimation using deep learning and selected spectral satellite images," Applied Energy, Elsevier, vol. 352(C).
    10. Garcia, Dário & Liang, Dawei & Almeida, Joana & Catela, Miguel & Costa, Hugo & Tibúrcio, Bruno D. & Guillot, Emmanuel & Vistas, Cláudia R., 2023. "Lowest-threshold solar laser operation under cloudy sky condition," Renewable Energy, Elsevier, vol. 210(C), pages 127-133.
    11. Yan, Hui & Liu, Ming & Wang, Zhu & Zhang, Kezhen & Chong, Daotong & Yan, Junjie, 2023. "Flexibility enhancement of solar-aided coal-fired power plant under different direct normal irradiance conditions," Energy, Elsevier, vol. 262(PA).
    12. Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    13. Zang, Haixiang & Chen, Dianhao & Liu, Jingxuan & Cheng, Lilin & Sun, Guoqiang & Wei, Zhinong, 2024. "Improving ultra-short-term photovoltaic power forecasting using a novel sky-image-based framework considering spatial-temporal feature interaction," Energy, Elsevier, vol. 293(C).
    14. Wang, Anming & Liu, Jiping & Liu, Ming & Li, Gen & Yan, Junjie, 2019. "Dynamic modeling and behavior of parabolic trough concentrated solar power system under cloudy conditions," Energy, Elsevier, vol. 177(C), pages 106-120.
    15. García, Jesús M. & Padilla, Ricardo Vasquez & Sanjuan, Marco E., 2016. "A biomimetic approach for modeling cloud shading with dynamic behavior," Renewable Energy, Elsevier, vol. 96(PA), pages 157-166.
    16. Guo, Su & Liu, Deyou & Chen, Xingying & Chu, Yinghao & Xu, Chang & Liu, Qunming & Zhou, Ling, 2017. "Model and control scheme for recirculation mode direct steam generation parabolic trough solar power plants," Applied Energy, Elsevier, vol. 202(C), pages 700-714.
    17. Zhu, Tingting & Wei, Haikun & Zhao, Xin & Zhang, Chi & Zhang, Kanjian, 2017. "Clear-sky model for wavelet forecast of direct normal irradiance," Renewable Energy, Elsevier, vol. 104(C), pages 1-8.
    18. Guo, Su & Liu, Deyou & Chu, Yinghao & Chen, Xingying & Xu, Chang & Liu, Qunming & Guo, Tiezheng, 2017. "Dynamic behavior and transfer function of collector field in once-through DSG solar trough power plants," Energy, Elsevier, vol. 121(C), pages 513-523.
    19. Zhang, Peiye & Liu, Ming & Zhao, Yongliang & Yan, Junjie, 2023. "Performance analysis on the parabolic trough solar receiver-reactor of methanol decomposition reaction under off-design conditions and during dynamic processes," Renewable Energy, Elsevier, vol. 205(C), pages 583-597.
    20. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2022. "A network of sky imagers for spatial solar irradiance assessment," Renewable Energy, Elsevier, vol. 187(C), pages 1009-1019.
    21. Lin, Fan & Zhang, Yao & Wang, Jianxue, 2023. "Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods," International Journal of Forecasting, Elsevier, vol. 39(1), pages 244-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Yinghao & Li, Mengying & Coimbra, Carlos F.M., 2016. "Sun-tracking imaging system for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 96(PA), pages 792-799.
    2. Muhsen, Dhiaa Halboot & Khatib, Tamer & Nagi, Farrukh, 2017. "A review of photovoltaic water pumping system designing methods, control strategies and field performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 70-86.
    3. Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
    4. Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2022. "A network of sky imagers for spatial solar irradiance assessment," Renewable Energy, Elsevier, vol. 187(C), pages 1009-1019.
    5. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    6. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    7. Gunasekar, N. & Mohanraj, M. & Velmurugan, V., 2015. "Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps," Energy, Elsevier, vol. 93(P1), pages 908-922.
    8. Chu, Yinghao & Coimbra, Carlos F.M., 2017. "Short-term probabilistic forecasts for Direct Normal Irradiance," Renewable Energy, Elsevier, vol. 101(C), pages 526-536.
    9. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    10. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    11. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    12. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    13. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    14. Liu, Shen & Colson, Gregory & Hao, Na & Wetzstein, Michael, 2018. "Toward an optimal household solar subsidy: A social-technical approach," Energy, Elsevier, vol. 147(C), pages 377-387.
    15. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    16. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    17. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    18. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    19. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    20. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:1362-1371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.