IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v166y2021i3d10.1007_s10584-021-03132-x.html
   My bibliography  Save this article

Adaptive mitigation strategies hedge against extreme climate futures

Author

Listed:
  • Giacomo Marangoni

    (Politecnico di Milano
    RFF-CMCC European Institute on Economics and the Environment, Centro Euro-Mediterraneo sui Cambiamenti Climatici)

  • Jonathan R. Lamontagne

    (Tufts University)

  • Julianne D. Quinn

    (University of Virginia)

  • Patrick M. Reed

    (Cornell University)

  • Klaus Keller

    (Penn State University)

Abstract

The United Nations Framework Convention on Climate Change agreed to “strengthen the global response to the threat of climate change, in the context of sustainable development and efforts to eradicate poverty” (UNFCCC 2015). Designing a global mitigation strategy to support this goal poses formidable challenges. For one, there are trade-offs between the economic costs and the environmental benefits of averting climate impacts. Furthermore, the coupled human-Earth systems are subject to deep and dynamic uncertainties. Previous economic analyses typically addressed either the former, introducing multiple objectives, or the latter, making mitigation actions responsive to new information. This paper aims at bridging these two separate strands of literature. We demonstrate how information feedback from observed global temperature changes can jointly improve the economic and environmental performance of mitigation strategies. We focus on strategies that maximize discounted expected utility while also minimizing warming above 2 °C, damage costs, and mitigation costs. Expanding on the Dynamic Integrated Climate-Economy (DICE) model and previous multi-objective efforts, we implement closed-loop control strategies, map the emerging trade-offs and quantify the value of the temperature information feedback under both well-characterized and deep climate uncertainties. Adaptive strategies strongly reduce high regrets, guarding against mitigation overspending for less sensitive climate futures, and excessive warming for more sensitive ones.

Suggested Citation

  • Giacomo Marangoni & Jonathan R. Lamontagne & Julianne D. Quinn & Patrick M. Reed & Klaus Keller, 2021. "Adaptive mitigation strategies hedge against extreme climate futures," Climatic Change, Springer, vol. 166(3), pages 1-17, June.
  • Handle: RePEc:spr:climat:v:166:y:2021:i:3:d:10.1007_s10584-021-03132-x
    DOI: 10.1007/s10584-021-03132-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-021-03132-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-021-03132-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. R. Lamontagne & P. M. Reed & G. Marangoni & K. Keller & G. G. Garner, 2019. "Robust abatement pathways to tolerable climate futures require immediate global action," Nature Climate Change, Nature, vol. 9(4), pages 290-294, April.
    2. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    3. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    4. Gregory Garner & Patrick Reed & Klaus Keller, 2016. "Climate risk management requires explicit representation of societal trade-offs," Climatic Change, Springer, vol. 134(4), pages 713-723, February.
    5. David Anthoff & Richard Tol, 2009. "The Impact of Climate Change on the Balanced Growth Equivalent: An Application of FUND," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(3), pages 351-367, July.
    6. David Anthoff & Richard S. J. Tol, 2022. "Testing the Dismal Theorem," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(5), pages 885-920.
    7. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.
    8. Yongyang Cai & Timothy M. Lenton & Thomas S. Lontzek, 2016. "Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction," Nature Climate Change, Nature, vol. 6(5), pages 520-525, May.
    9. Martin L. Weitzman, 2012. "GHG Targets as Insurance Against Catastrophic Climate Damages," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(2), pages 221-244, March.
    10. Grubler, Arnulf & Nakicenovic, Nebojsa & Victor, David G., 1999. "Dynamics of energy technologies and global change," Energy Policy, Elsevier, vol. 27(5), pages 247-280, May.
    11. Howard Kunreuther & Geoffrey Heal & Myles Allen & Ottmar Edenhofer & Christopher B. Field & Gary Yohe, 2013. "Risk management and climate change," Nature Climate Change, Nature, vol. 3(5), pages 447-450, May.
    12. Timothy Lenton & Juan-Carlos Ciscar, 2013. "Integrating tipping points into climate impact assessments," Climatic Change, Springer, vol. 117(3), pages 585-597, April.
    13. Marlos Goes & Nancy Tuana & Klaus Keller, 2011. "The economics (or lack thereof) of aerosol geoengineering," Climatic Change, Springer, vol. 109(3), pages 719-744, December.
    14. Manasvini Vaidyula & Christina Hood, 2018. "Accounting for baseline targets in NDCs: Issues and options for guidance," OECD/IEA Climate Change Expert Group Papers 2018/02, OECD Publishing.
    15. Detlef P. van Vuuren & Andries F. Hof & Mariësse A. E. van Sluisveld & Keywan Riahi, 2017. "Open discussion of negative emissions is urgently needed," Nature Energy, Nature, vol. 2(12), pages 902-904, December.
    16. Martin L. Weitzman, 2011. "Fat-Tailed Uncertainty in the Economics of Catastrophic Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 275-292, Summer.
    17. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    18. Soheil Shayegh & Valerie Thomas, 2015. "Adaptive stochastic integrated assessment modeling of optimal greenhouse gas emission reductions," Climatic Change, Springer, vol. 128(1), pages 1-15, January.
    19. Gregory Garner & Patrick Reed & Klaus Keller, 2016. "Climate risk management requires explicit representation of societal trade-offs," Climatic Change, Springer, vol. 134(4), pages 713-723, February.
    20. Geoffrey Heal, 2017. "The Economics of the Climate," Journal of Economic Literature, American Economic Association, vol. 55(3), pages 1046-1063, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ajay Gambhir & Shivika Mittal & Robin D. Lamboll & Neil Grant & Dan Bernie & Laila Gohar & Adam Hawkes & Alexandre Köberle & Joeri Rogelj & Jason A. Lowe, 2023. "Adjusting 1.5 degree C climate change mitigation pathways in light of adverse new information," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    2. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    3. Gerard Meijden & Frederick Ploeg & Cees Withagen, 2017. "Frontiers of Climate Change Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 1-14, September.
    4. Stephen Keen & Timothy M. Lenton & Antoine Godin & Devrim Yilmaz & Matheus Grasselli & Timothy J. Garrett, 2021. "Economists' erroneous estimates of damages from climate change," Papers 2108.07847, arXiv.org.
    5. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    6. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    7. Mariia Belaia & Michael Funke & Nicole Glanemann, 2017. "Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 93-125, May.
    8. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    9. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    10. Tsigaris, Panagiotis & Wood, Joel, 2016. "A simple climate-Solow model for introducing the economics of climate change to undergraduate students," International Review of Economics Education, Elsevier, vol. 23(C), pages 65-81.
    11. Richard S.J. Tol, 2018. "The impact of climate change and the social cost of carbon," Working Paper Series 1318, Department of Economics, University of Sussex Business School.
    12. De Bruin, Kelly & Kiran Krishnamurthy, Chandra, 2021. "Optimal Climate Policy with Fat-tailed Uncertainty: What the Models Can Tell Us," Papers WP697, Economic and Social Research Institute (ESRI).
    13. Hongbo Duan & Gupeng Zhang & Shouyang Wang & Ying Fan, 2018. "Balancing China’s climate damage risk against emission control costs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(3), pages 387-403, March.
    14. Franziska Piontek & Matthias Kalkuhl & Elmar Kriegler & Anselm Schultes & Marian Leimbach & Ottmar Edenhofer & Nico Bauer, 2019. "Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1357-1385, August.
    15. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    16. Frederick Ploeg, 2021. "Carbon pricing under uncertainty," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 28(5), pages 1122-1142, October.
    17. Heutel, Garth & Moreno-Cruz, Juan & Shayegh, Soheil, 2016. "Climate tipping points and solar geoengineering," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 19-45.
    18. Tol, Richard S.J., 2024. "A meta-analysis of the total economic impact of climate change," Energy Policy, Elsevier, vol. 185(C).
    19. Richard Tol, 2015. "Bootstraps for Meta-Analysis with an Application to the Impact of Climate Change," Computational Economics, Springer;Society for Computational Economics, vol. 46(2), pages 287-303, August.
    20. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:166:y:2021:i:3:d:10.1007_s10584-021-03132-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.