IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v226y2024ics0960148124004774.html
   My bibliography  Save this article

Hydrogen production from wastewater: A comprehensive review of conventional and solar powered technologies

Author

Listed:
  • Merabet, Nour Hane
  • Kerboua, Kaouther
  • Hoinkis, Jan

Abstract

The need to reduce the carbon footprint of conventional energy sources has made green hydrogen a promising solution for the energy transition. The most environmentally friendly way to produce hydrogen is through water-based production using renewable energy. However, the availability of fresh water is limited, so switching to wastewater instead of fresh water is the key solution to this problem. In response to this issue, the present review reports the main findings of the research studies dealing with the feasibility of hydrogen production from wastewater using various technologies, including biological, electrochemical, and advanced oxidation routes. These methods have been studied in a large number of experiments with the aim of investigating and improving the potential of each method. On the other hand, the maturity of solar energy technologies has led researchers to focus on the possibility of harnessing this source and combining it with wastewater treatment techniques for the production of green hydrogen. Therefore, the present review pays special attention to solar driven hydrogen production from wastewater, by highlighting the potential of several technologies for simultaneous water treatment and green hydrogen production from wastewater. Recent results, limitations, challenges, possible improvements and techno-economic assessments reported by several authors, as well as future directions of research and industrial implementation in this field are reported.

Suggested Citation

  • Merabet, Nour Hane & Kerboua, Kaouther & Hoinkis, Jan, 2024. "Hydrogen production from wastewater: A comprehensive review of conventional and solar powered technologies," Renewable Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004774
    DOI: 10.1016/j.renene.2024.120412
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120412?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jayabalan, Tamilmani & Manickam, Matheswaran & Naina Mohamed, Samsudeen, 2020. "NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 1144-1152.
    2. Lu Lu & Jeremy S. Guest & Catherine A. Peters & Xiuping Zhu & Greg H. Rau & Zhiyong Jason Ren, 2018. "Wastewater treatment for carbon capture and utilization," Nature Sustainability, Nature, vol. 1(12), pages 750-758, December.
    3. Dinesh, G. Kumaravel & Chauhan, Rohit & Chakma, Sankar, 2018. "Influence and strategies for enhanced biohydrogen production from food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 807-822.
    4. Marques, Fabielle C. & Silva, Julio Cesar M. & Libardi, Cícero P. & de Carvalho, Rael R. & Sequine, Gabriel F. & Valane, Gabriel M., 2020. "Hydrogen production by photovoltaic-electrolysis using aqueous waste from ornamental stones industries," Renewable Energy, Elsevier, vol. 152(C), pages 1266-1273.
    5. Barbosa, Sónia G. & Rodrigues, Telma & Peixoto, Luciana & Kuntke, Philipp & Alves, Maria Madalena & Pereira, Maria Alcina & Ter Heijne, Annemiek, 2019. "Anaerobic biological fermentation of urine as a strategy to enhance the performance of a microbial electrolysis cell (MEC)," Renewable Energy, Elsevier, vol. 139(C), pages 936-943.
    6. Chen, Yingwen & Xu, Yuan & Chen, Liuliu & Li, Peiwen & Zhu, Shemin & Shen, Shubao, 2015. "Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes," Energy, Elsevier, vol. 88(C), pages 377-384.
    7. Hu, Song & Guo, Bin & Ding, Shunliang & Yang, Fuyuan & Dang, Jian & Liu, Biao & Gu, Junjie & Ma, Jugang & Ouyang, Minggao, 2022. "A comprehensive review of alkaline water electrolysis mathematical modeling," Applied Energy, Elsevier, vol. 327(C).
    8. Devi Radhika & Archana Shivakumar & Deepak R. Kasai & Ravindranadh Koutavarapu & Shaik Gouse Peera, 2022. "Microbial Electrolysis Cell as a Diverse Technology: Overview of Prospective Applications, Advancements, and Challenges," Energies, MDPI, vol. 15(7), pages 1-19, April.
    9. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    10. A K M Khabirul Islam & Patrick S. M. Dunlop & Neil J. Hewitt & Rose Lenihan & Caterina Brandoni, 2021. "Bio-Hydrogen Production from Wastewater: A Comparative Study of Low Energy Intensive Production Processes," Clean Technol., MDPI, vol. 3(1), pages 1-27, February.
    11. Pooja Dange & Soumya Pandit & Dipak Jadhav & Poojhaa Shanmugam & Piyush Kumar Gupta & Sanjay Kumar & Manu Kumar & Yung-Hun Yang & Shashi Kant Bhatia, 2021. "Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    12. Sudhagar Pitchaimuthu & Kishore Sridharan & Sanjay Nagarajan & Sengeni Ananthraj & Peter Robertson & Moritz F. Kuehnel & Ángel Irabien & Mercedes Maroto-Valer, 2022. "Solar Hydrogen Fuel Generation from Wastewater—Beyond Photoelectrochemical Water Splitting: A Perspective," Energies, MDPI, vol. 15(19), pages 1-23, October.
    13. Maggio, G. & Squadrito, G. & Nicita, A., 2022. "Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route," Applied Energy, Elsevier, vol. 306(PA).
    14. Zheng, G.H. & Wang, L. & Kang, Z.H., 2010. "Feasibility of biohydrogen production from tofu wastewater with glutamine auxotrophic mutant of Rhodobacter sphaeroides," Renewable Energy, Elsevier, vol. 35(12), pages 2910-2913.
    15. Laura Pérez Orosa & Eva Chinarro & Domingo Guinea & María C. García-Alegre, 2022. "Hydrogen Production by Wastewater Alkaline Electro-Oxidation," Energies, MDPI, vol. 15(16), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilias Apostolopoulos & Georgios Bampos & Amaia Soto Beobide & Stefanos Dailianis & George Voyiatzis & Symeon Bebelis & Gerasimos Lyberatos & Georgia Antonopoulou, 2021. "The Effect of Anode Material on the Performance of a Hydrogen Producing Microbial Electrolysis Cell, Operating with Synthetic and Real Wastewaters," Energies, MDPI, vol. 14(24), pages 1-20, December.
    2. Wang, Hui & Zeng, Shufang & Pan, Xiaoli & Liu, Lei & Chen, Yunjie & Tang, Jiawei & Luo, Feng, 2022. "Bioelectrochemically assisting anaerobic digestion enhanced methane production under low-temperature," Renewable Energy, Elsevier, vol. 194(C), pages 1071-1083.
    3. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    4. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    5. Liu, Wenjie & Liu, Xingchen & Xin, Shuaishuai & Wang, Yanhao & Huo, Siyue & Fu, Wenxian & Zhao, Quanyou & Gao, Mengchun & Xie, Haijiao, 2024. "Photocatalytic fuel cell assisted by Fenton-like reaction for p-Chloronitrobenzen degradation and electricity production through S-scheme heterojunction C3N5 modified TNAs photoanode: Performance, DFT," Applied Energy, Elsevier, vol. 358(C).
    6. Zhu, Wenjing & Duan, Cuncun & Chen, Bin, 2024. "Energy efficiency assessment of wastewater treatment plants in China based on multiregional input–output analysis and data envelopment analysis," Applied Energy, Elsevier, vol. 356(C).
    7. Shahid, Kanwal & Ramasamy, Deepika Lakshmi & Haapasaari, Sampo & Sillanpää, Mika & Pihlajamäki, Arto, 2021. "Stainless steel and carbon brushes as high-performance anodes for energy production and nutrient recovery using the microbial nutrient recovery system," Energy, Elsevier, vol. 233(C).
    8. He, Yanying & Li, Yiming & Li, Xuecheng & Liu, Yingrui & Wang, Yufen & Guo, Haixiao & Hou, Jiaqi & Zhu, Tingting & Liu, Yiwen, 2023. "Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
    10. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    11. Beiying Li & Conghe Liu & Jingjing Bai & Yikun Huang & Run Su & Yan Wei & Bin Ma, 2024. "Strategy to mitigate substrate inhibition in wastewater treatment systems," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Sakas, Georgios & Ibáñez-Rioja, Alejandro & Pöyhönen, Santeri & Järvinen, Lauri & Kosonen, Antti & Ruuskanen, Vesa & Kauranen, Pertti & Ahola, Jero, 2024. "Sensitivity analysis of the process conditions affecting the shunt currents and the SEC in an industrial-scale alkaline water electrolyzer plant," Applied Energy, Elsevier, vol. 359(C).
    13. Zhao, Chuandang & Xu, Jiuping & Wang, Fengjuan & Xie, Guo & Tan, Cheng, 2024. "Economic–environmental trade-offs based support policy towards optimal planning of wastewater heat recovery," Applied Energy, Elsevier, vol. 364(C).
    14. Pooja Dange & Soumya Pandit & Dipak Jadhav & Poojhaa Shanmugam & Piyush Kumar Gupta & Sanjay Kumar & Manu Kumar & Yung-Hun Yang & Shashi Kant Bhatia, 2021. "Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    15. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    16. Tom Terlouw & Lorenzo Rosa & Christian Bauer & Russell McKenna, 2024. "Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Shuang Liu & Wenzhe Li & Guoxiang Zheng & Haiyan Yang & Longhai Li, 2020. "Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic Semi-Continuous Process," Energies, MDPI, vol. 13(15), pages 1-13, July.
    18. Monika Šabić Runjavec & Marija Vuković Domanovac & Ante Jukić, 2023. "Application of Industrial Wastewater and Sewage Sludge for Biohydrogen Production," Energies, MDPI, vol. 16(5), pages 1-15, March.
    19. Ortiz-Martínez, V.M. & Salar-García, M.J. & Touati, K. & Hernández-Fernández, F.J. & de los Ríos, A.P. & Belhoucine, F. & Berrabbah, A. Alioua, 2016. "Assessment of spinel-type mixed valence Cu/Co and Ni/Co-based oxides for power production in single-chamber microbial fuel cells," Energy, Elsevier, vol. 113(C), pages 1241-1249.
    20. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.