IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124008590.html
   My bibliography  Save this article

Optimal planning and operation for a grid-connected solar–wind–hydro energy system in wastewater treatment plants

Author

Listed:
  • Zhao, Chuandang
  • Wang, Fengjuan
  • Xu, Jiuping
  • Tan, Cheng
  • Østergaard, Poul Alberg

Abstract

This study proposes a multi-objective optimization model for a grid-connected wind–solar–hydro system in wastewater treatment plants, addressing trade-offs among electricity utilization cost, self-sufficiency, complementary effect, and carbon emission. Two modes are explored: one allowing energy export and another leading to curtailment. A case study from a plant with design scale of 50,000 m3/day in China found that a higher complementary rate can slightly increase costs, lower self-sufficiency, and increase carbon emissions. Compared to the initial scheme without the solar–wind–hydro system, the design modes of export and curtail reduce electricity costs by 2.15 and 0.87 million CNY, carbon emissions by 2760 and 1439 tons annually, and increase self-sufficiency to 52% and 42%, respectively. The levelized cost of energy is 25% higher and total installed capacity decreases by 54% when surplus cannot be exported. A 6.7% curtailment minimizes the electricity utilization cost. Complementarity rates show seasonal fluctuations, peaking in August, with the highest yearly rate of 0.1528 at a solar-to-wind capacity ratio of 1.747. Output ratios remain stable across different treatment scales under curtailment mode: imports about 60%, wind and solar about 20% each, and hydropower 2%. Price changes and potential for zero-carbon operation are further discussed.

Suggested Citation

  • Zhao, Chuandang & Wang, Fengjuan & Xu, Jiuping & Tan, Cheng & Østergaard, Poul Alberg, 2024. "Optimal planning and operation for a grid-connected solar–wind–hydro energy system in wastewater treatment plants," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008590
    DOI: 10.1016/j.renene.2024.120791
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124008590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120791?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gemechu, Eskinder & Kumar, Amit, 2022. "A review of how life cycle assessment has been used to assess the environmental impacts of hydropower energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Smriti Mallapaty, 2020. "How China could be carbon neutral by mid-century," Nature, Nature, vol. 586(7830), pages 482-483, October.
    3. Zhao, Chuandang & Xu, Jiuping & Wang, Fengjuan & Xie, Guo & Tan, Cheng, 2024. "Economic–environmental trade-offs based support policy towards optimal planning of wastewater heat recovery," Applied Energy, Elsevier, vol. 364(C).
    4. Monforti, F. & Huld, T. & Bódis, K. & Vitali, L. & D'Isidoro, M. & Lacal-Arántegui, R., 2014. "Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach," Renewable Energy, Elsevier, vol. 63(C), pages 576-586.
    5. Stevens, Kelly A. & Tang, Tian & Hittinger, Eric, 2023. "Innovation in complementary energy technologies from renewable energy policies," Renewable Energy, Elsevier, vol. 209(C), pages 431-441.
    6. Zhou, Siyu & Han, Yang & Zalhaf, Amr S. & Chen, Shuheng & Zhou, Te & Yang, Ping & Elboshy, Bahaa, 2023. "A novel multi-objective scheduling model for grid-connected hydro-wind-PV-battery complementary system under extreme weather: A case study of Sichuan, China," Renewable Energy, Elsevier, vol. 212(C), pages 818-833.
    7. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    8. Moazeni, Faegheh & Khazaei, Javad, 2021. "Optimal design and operation of an islanded water-energy network including a combined electrodialysis-reverse osmosis desalination unit," Renewable Energy, Elsevier, vol. 167(C), pages 395-408.
    9. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Odabaş Baş, Gözde & Aydınalp Köksal, Merih, 2022. "Environmental and techno-economic analysis of the integration of biogas and solar power systems into urban wastewater treatment plants," Renewable Energy, Elsevier, vol. 196(C), pages 579-597.
    11. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    12. Lu Lu & Jeremy S. Guest & Catherine A. Peters & Xiuping Zhu & Greg H. Rau & Zhiyong Jason Ren, 2018. "Wastewater treatment for carbon capture and utilization," Nature Sustainability, Nature, vol. 1(12), pages 750-758, December.
    13. Wang, Fengjuan & Xie, Yachen & Xu, Jiuping, 2019. "Reliable-economical equilibrium based short-term scheduling towards hybrid hydro-photovoltaic generation systems: Case study from China," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Laimon, M. & Yusaf, T., 2024. "Towards energy freedom: Exploring sustainable solutions for energy independence and self-sufficiency using integrated renewable energy-driven hydrogen system," Renewable Energy, Elsevier, vol. 222(C).
    15. Panepinto, Deborah & Fiore, Silvia & Zappone, Mariantonia & Genon, Giuseppe & Meucci, Lorenza, 2016. "Evaluation of the energy efficiency of a large wastewater treatment plant in Italy," Applied Energy, Elsevier, vol. 161(C), pages 404-411.
    16. Han, Shuang & Zhang, Lu-na & Liu, Yong-qian & Zhang, Hao & Yan, Jie & Li, Li & Lei, Xiao-hui & Wang, Xu, 2019. "Quantitative evaluation method for the complementarity of wind–solar–hydro power and optimization of wind–solar ratio," Applied Energy, Elsevier, vol. 236(C), pages 973-984.
    17. Wang, Fengjuan & Xu, Jiuping & Wang, Qingchun, 2024. "Complementary operation based sizing and scheduling strategy for hybrid hydro-PV-wind generation systems connected to long-distance transmission lines," Applied Energy, Elsevier, vol. 364(C).
    18. Bousquet, Cécile & Samora, Irene & Manso, Pedro & Rossi, Luca & Heller, Philippe & Schleiss, Anton J., 2017. "Assessment of hydropower potential in wastewater systems and application to Switzerland," Renewable Energy, Elsevier, vol. 113(C), pages 64-73.
    19. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    20. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    21. Hoicka, Christina E. & Rowlands, Ian H., 2011. "Solar and wind resource complementarity: Advancing options for renewable electricity integration in Ontario, Canada," Renewable Energy, Elsevier, vol. 36(1), pages 97-107.
    22. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    23. Dominic Samoita & Charles Nzila & Poul Alberg Østergaard & Arne Remmen, 2020. "Barriers and Solutions for Increasing the Integration of Solar Photovoltaic in Kenya’s Electricity Mix," Energies, MDPI, vol. 13(20), pages 1-17, October.
    24. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    25. Ren, Haoshan & Ma, Zhenjun & Fai Norman Tse, Chung & Sun, Yongjun, 2022. "Optimal control of solar-powered electric bus networks with improved renewable energy on-site consumption and reduced grid dependence," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jiuping & Zhao, Chuandang & Wang, Fengjuan & Yang, Guocan, 2022. "Industrial decarbonisation oriented distributed renewable generation towards wastewater treatment sector: Case from the Yangtze River Delta region in China," Energy, Elsevier, vol. 256(C).
    2. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Rafael Peña Gallardo & Adalberto Ospino Castro & Aurelio Medina Ríos, 2020. "An Image Processing-Based Method to Assess the Monthly Energetic Complementarity of Solar and Wind Energy in Colombia," Energies, MDPI, vol. 13(5), pages 1-17, February.
    4. Wang, Fengjuan & Xu, Jiuping & Wang, Qingchun, 2024. "Complementary operation based sizing and scheduling strategy for hybrid hydro-PV-wind generation systems connected to long-distance transmission lines," Applied Energy, Elsevier, vol. 364(C).
    5. Xiaomei Ma & Yongqian Liu & Jie Yan & Han Wang, 2023. "A WGAN-GP-Based Scenarios Generation Method for Wind and Solar Power Complementary Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
    6. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    7. Dujardin, Jérôme & Kahl, Annelen & Kruyt, Bert & Bartlett, Stuart & Lehning, Michael, 2017. "Interplay between photovoltaic, wind energy and storage hydropower in a fully renewable Switzerland," Energy, Elsevier, vol. 135(C), pages 513-525.
    8. Neto, Pedro Bezerra Leite & Saavedra, Osvaldo R. & Oliveira, Denisson Q., 2020. "The effect of complementarity between solar, wind and tidal energy in isolated hybrid microgrids," Renewable Energy, Elsevier, vol. 147(P1), pages 339-355.
    9. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Kougias, Ioannis & Szabó, Sándor & Monforti-Ferrario, Fabio & Huld, Thomas & Bódis, Katalin, 2016. "A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems," Renewable Energy, Elsevier, vol. 87(P2), pages 1023-1030.
    11. Karl Ezra S. Pilario & Jessa A. Ibañez & Xaviery N. Penisa & Johndel B. Obra & Carl Michael F. Odulio & Joey D. Ocon, 2022. "Spatio-Temporal Solar–Wind Complementarity Assessment in the Province of Kalinga-Apayao, Philippines Using Canonical Correlation Analysis," Sustainability, MDPI, vol. 14(6), pages 1-12, March.
    12. Jakub Jurasz & Jerzy Mikulik, 2017. "A strategy for the photovoltaic-powered pumped storage hydroelectricity," Energy & Environment, , vol. 28(5-6), pages 544-563, September.
    13. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Yan, Zhiyu, 2022. "A Wasserstein metric-based distributionally robust optimization approach for reliable-economic equilibrium operation of hydro-wind-solar energy systems," Renewable Energy, Elsevier, vol. 196(C), pages 204-219.
    14. Strazzabosco, A. & Kenway, S.J. & Conrad, S.A. & Lant, P.A., 2021. "Renewable electricity generation in the Australian water industry: Lessons learned and challenges for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    15. D’Isidoro, Massimo & Briganti, Gino & Vitali, Lina & Righini, Gaia & Adani, Mario & Guarnieri, Guido & Moretti, Lorenzo & Raliselo, Muso & Mahahabisa, Mabafokeng & Ciancarella, Luisella & Zanini, Gabr, 2020. "Estimation of solar and wind energy resources over Lesotho and their complementarity by means of WRF yearly simulation at high resolution," Renewable Energy, Elsevier, vol. 158(C), pages 114-129.
    16. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    17. Henao, Felipe & Dyner, Isaac, 2020. "Renewables in the optimal expansion of colombian power considering the Hidroituango crisis," Renewable Energy, Elsevier, vol. 158(C), pages 612-627.
    18. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    19. Gu, Yifan & Li, Yue & Li, Xuyao & Luo, Pengzhou & Wang, Hongtao & Robinson, Zoe P. & Wang, Xin & Wu, Jiang & Li, Fengting, 2017. "The feasibility and challenges of energy self-sufficient wastewater treatment plants," Applied Energy, Elsevier, vol. 204(C), pages 1463-1475.
    20. Moein Taghavi & Hamed Delkhosh & Mohsen Parsa Moghaddam & Alireza Sheikhi Fini, 2022. "Combined PV-Wind Hosting Capacity Enhancement of a Hybrid AC/DC Distribution Network Using Reactive Control of Convertors and Demand Flexibility," Sustainability, MDPI, vol. 14(13), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124008590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.