IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2611-d786193.html
   My bibliography  Save this article

Microbial Electrolysis Cell as a Diverse Technology: Overview of Prospective Applications, Advancements, and Challenges

Author

Listed:
  • Devi Radhika

    (Department of Chemistry, Faculty of Engineering and Technology, Jain-Deemed to be University, Jakkasandra, Ramanagara 562 112, Karnataka, India)

  • Archana Shivakumar

    (Department of Chemistry, Faculty of Engineering and Technology, Jain-Deemed to be University, Jakkasandra, Ramanagara 562 112, Karnataka, India)

  • Deepak R. Kasai

    (Department of Chemistry, Faculty of Engineering and Technology, Jain-Deemed to be University, Jakkasandra, Ramanagara 562 112, Karnataka, India)

  • Ravindranadh Koutavarapu

    (Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea)

  • Shaik Gouse Peera

    (Department of Environmental Science, Keimyung University, Dalseo-gu, Daegu 42601, Korea)

Abstract

Microbial electrolysis cells (MECs) have been explored for various applications, including the removal of industrial pollutants, wastewater treatment chemical synthesis, and biosensing. On the other hand, MEC technology is still in its early stages and faces significant obstacles regarding practical large-scale implementations. MECs are used for energy generation and hydrogen peroxide, methane, hydrogen/biohydrogen production, and pollutant removal. This review aimed to investigate the aforementioned uses in order to better understand the different applications of MECs in the following scenarios: MECs for energy generation and recycling, such as hydrogen, methane, and hydrogen peroxide; contaminant removal, particularly complex organic and inorganic contaminants; and resource recovery. MEC technology was examined in terms of new concepts, configuration optimization, electron transfer pathways in biocathodes, and coupling with other technologies for value-added applications, such as MEC anaerobic digestion, combined MEC–MFC, and others. The goal of the review was to help researchers and engineers understand the most recent developments in MEC technologies and applications.

Suggested Citation

  • Devi Radhika & Archana Shivakumar & Deepak R. Kasai & Ravindranadh Koutavarapu & Shaik Gouse Peera, 2022. "Microbial Electrolysis Cell as a Diverse Technology: Overview of Prospective Applications, Advancements, and Challenges," Energies, MDPI, vol. 15(7), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2611-:d:786193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2611/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2611/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vincent, Immanuel & Bessarabov, Dmitri, 2018. "Low cost hydrogen production by anion exchange membrane electrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1690-1704.
    2. Abbasi, Kashif Raza & Hussain, Khadim & Redulescu, Magdalena & Ozturk, Ilhan, 2021. "Does natural resources depletion and economic growth achieve the carbon neutrality target of the UK? A way forward towards sustainable development," Resources Policy, Elsevier, vol. 74(C).
    3. Shaik Gouse Peera & Ravindranadh Koutavarapu & Chao Liu & Gaddam Rajeshkhanna & Arunchander Asokan & Ch. Venkata Reddy, 2021. "Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon Catalyst Derived from a Solid-State Metal-Organic Framework Complex for OER and HER Electrocatalysis," Energies, MDPI, vol. 14(5), pages 1-14, March.
    4. Kang, Kang & Klinghoffer, Naomi B. & ElGhamrawy, Islam & Berruti, Franco, 2021. "Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Amro Hassanein & Freddy Witarsa & Stephanie Lansing & Ling Qiu & Yong Liang, 2020. "Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure," Sustainability, MDPI, vol. 12(20), pages 1-12, October.
    6. Kadier, Abudukeremu & Kalil, Mohd Sahaid & Abdeshahian, Peyman & Chandrasekhar, K. & Mohamed, Azah & Azman, Nadia Farhana & Logroño, Washington & Simayi, Yibadatihan & Hamid, Aidil Abdul, 2016. "Recent advances and emerging challenges in microbial electrolysis cells (MECs) for microbial production of hydrogen and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 501-525.
    7. Junne, Tobias & Wulff, Niklas & Breyer, Christian & Naegler, Tobias, 2020. "Critical materials in global low-carbon energy scenarios: The case for neodymium, dysprosium, lithium, and cobalt," Energy, Elsevier, vol. 211(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Kaipeng & Tang, Xu & Wang, Peng & Willerström, Jakob & Höök, Mikael, 2021. "Bridging energy and metal sustainability: Insights from China’s wind power development up to 2050," Energy, Elsevier, vol. 227(C).
    2. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Hossain, Mohammad Razib & Singh, Sanjeet & Sharma, Gagan Deep & Apostu, Simona-Andreea & Bansal, Pooja, 2023. "Overcoming the shock of energy depletion for energy policy? Tracing the missing link between energy depletion, renewable energy development and decarbonization in the USA," Energy Policy, Elsevier, vol. 174(C).
    4. Ana L. Santos & Maria-João Cebola & Diogo M. F. Santos, 2021. "Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers," Energies, MDPI, vol. 14(11), pages 1-35, May.
    5. Idiano D'Adamo & Massimo Gastaldi & Ilhan Ozturk, 2023. "The sustainable development of mobility in the green transition: Renewable energy, local industrial chain, and battery recycling," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(2), pages 840-852, April.
    6. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    7. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    8. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    9. Liu, Haiying & Saleem, Muhammad Mansoor & Al-Faryan, Mamdouh Abdulaziz Saleh & Khan, Irfan & Zafar, Muhammad Wasif, 2022. "Impact of governance and globalization on natural resources volatility: The role of financial development in the Middle East North Africa countries," Resources Policy, Elsevier, vol. 78(C).
    10. Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    12. Li, Xin & Li, Zheng & Su, Chi-Wei & Umar, Muhammad & Shao, Xuefeng, 2022. "Exploring the asymmetric impact of economic policy uncertainty on China's carbon emissions trading market price: Do different types of uncertainty matter?," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
    13. Daniela S. Falcão, 2023. "Green Hydrogen Production by Anion Exchange Membrane Water Electrolysis: Status and Future Perspectives," Energies, MDPI, vol. 16(2), pages 1-8, January.
    14. Lu, Yunguo & Zhang, Lin, 2022. "National mitigation policy and the competitiveness of Chinese firms," Energy Economics, Elsevier, vol. 109(C).
    15. Wu, Guoyong & Gao, Yue & Feng, Yanchao, 2023. "Assessing the environmental effects of the supporting policies for mineral resource-exhausted cities in China," Resources Policy, Elsevier, vol. 85(PB).
    16. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    17. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    18. Hossain, Md. Emran & Islam, Md. Sayemul & Bandyopadhyay, Arunava & Awan, Ashar & Hossain, Mohammad Razib & Rej, Soumen, 2022. "Mexico at the crossroads of natural resource dependence and COP26 pledge: Does technological innovation help?," Resources Policy, Elsevier, vol. 77(C).
    19. Shi, Qing & Sun, Xiaoqi & Xu, Man & Wang, Mengjiao, 2022. "The multiplex network structure of global cobalt industry chain," Resources Policy, Elsevier, vol. 76(C).
    20. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2611-:d:786193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.