IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8375-d700647.html
   My bibliography  Save this article

The Effect of Anode Material on the Performance of a Hydrogen Producing Microbial Electrolysis Cell, Operating with Synthetic and Real Wastewaters

Author

Listed:
  • Ilias Apostolopoulos

    (Institute of Chemical Engineering Sciences, Platani, GR 26504 Patras, Greece
    Department of Chemical Engineering, University of Patras, GR 26500 Patras, Greece)

  • Georgios Bampos

    (Institute of Chemical Engineering Sciences, Platani, GR 26504 Patras, Greece
    Department of Chemical Engineering, University of Patras, GR 26500 Patras, Greece)

  • Amaia Soto Beobide

    (Institute of Chemical Engineering Sciences, Platani, GR 26504 Patras, Greece)

  • Stefanos Dailianis

    (Department of Biology, Section of Animal Biology, University of Patras, GR 26500 Patras, Greece)

  • George Voyiatzis

    (Institute of Chemical Engineering Sciences, Platani, GR 26504 Patras, Greece)

  • Symeon Bebelis

    (Department of Chemical Engineering, University of Patras, GR 26500 Patras, Greece)

  • Gerasimos Lyberatos

    (Institute of Chemical Engineering Sciences, Platani, GR 26504 Patras, Greece
    School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece)

  • Georgia Antonopoulou

    (Institute of Chemical Engineering Sciences, Platani, GR 26504 Patras, Greece)

Abstract

The aim of the study was to assess the effect of anode materials, namely a carbon nanotube (CNT)-buckypaper and a commercial carbon paper (CP) on the performance of a two-chamber microbial electrolysis cell (MEC), in terms of hydrogen production and main electrochemical characteristics. The experiments were performed using both acetate-based synthetic wastewater and real wastewater, specifically the effluent of a dark fermentative hydrogenogenic reactor (fermentation effluent), using cheese whey (CW) as substrate. The results showed that CP led to higher hydrogen production efficiency and current density compared to the CNT-buckypaper anode, which was attributed to the better colonization of the CP electrode with electroactive microorganisms, due to the negative effects of CNT-based materials on the bacteria metabolism. By using the fermentation effluent as substrate, a two-stage process is developed, where dark fermentation (DF) of CW for hydrogen production occurs in the first step, while the DF effluent is used as substrate in the MEC, in the second step, to further increase hydrogen production. By coupling DF-MEC, a dual environmental benefit is provided, combining sustainable bioenergy generation together with wastewater treatment, a fact that is also reinforced by the toxicity data of the current study.

Suggested Citation

  • Ilias Apostolopoulos & Georgios Bampos & Amaia Soto Beobide & Stefanos Dailianis & George Voyiatzis & Symeon Bebelis & Gerasimos Lyberatos & Georgia Antonopoulou, 2021. "The Effect of Anode Material on the Performance of a Hydrogen Producing Microbial Electrolysis Cell, Operating with Synthetic and Real Wastewaters," Energies, MDPI, vol. 14(24), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8375-:d:700647
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jayabalan, Tamilmani & Manickam, Matheswaran & Naina Mohamed, Samsudeen, 2020. "NiCo2O4-graphene nanocomposites in sugar industry wastewater fed microbial electrolysis cell for enhanced biohydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 1144-1152.
    2. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    3. Antonopoulou, G. & Ntaikou, I. & Pastore, C. & di Bitonto, L. & Bebelis, S. & Lyberatos, G., 2019. "An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue," Applied Energy, Elsevier, vol. 242(C), pages 1064-1073.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merabet, Nour Hane & Kerboua, Kaouther & Hoinkis, Jan, 2024. "Hydrogen production from wastewater: A comprehensive review of conventional and solar powered technologies," Renewable Energy, Elsevier, vol. 226(C).
    2. Pooja Dange & Soumya Pandit & Dipak Jadhav & Poojhaa Shanmugam & Piyush Kumar Gupta & Sanjay Kumar & Manu Kumar & Yung-Hun Yang & Shashi Kant Bhatia, 2021. "Recent Developments in Microbial Electrolysis Cell-Based Biohydrogen Production Utilizing Wastewater as a Feedstock," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    3. Ahmed Fathy & Hegazy Rezk & Dalia Yousri & Abdullah G. Alharbi & Sulaiman Alshammari & Yahia B. Hassan, 2023. "Maximizing Bio-Hydrogen Production from an Innovative Microbial Electrolysis Cell Using Artificial Intelligence," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    4. Liu, Hong-zhou & Chen, Tie-zhu & Wang, Nan & Zhang, Yu-rui & Li, Jian-chang, 2024. "A new strategy for improving MFC power output by shared electrode MFC–MEC coupling," Applied Energy, Elsevier, vol. 359(C).
    5. Segundo Rojas-Flores & Magaly De La Cruz-Noriega & Luis Cabanillas-Chirinos & Santiago M. Benites & Renny Nazario-Naveda & Daniel Delfín-Narciso & Moisés Gallozzo-Cardenas & Félix Diaz & Emzon Murga-T, 2023. "Green Energy Generated in Single-Chamber Microbial Fuel Cells Using Tomato Waste," Sustainability, MDPI, vol. 15(13), pages 1-12, July.
    6. Antonopoulou, G. & Bampos, G. & Ntaikou, I. & Alexandropoulou, M. & Dailianis, S. & Bebelis, S. & Lyberatos, G., 2023. "The biochemical and electrochemical characteristics of a microbial fuel cell used to produce electricity from olive mill wastewater," Energy, Elsevier, vol. 282(C).
    7. Leicester, Daniel & Amezaga, Jaime & Heidrich, Elizabeth, 2020. "Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Liang, Dandan & Zhang, Lijuan & He, Weihua & Li, Chao & Liu, Junfeng & Liu, Shaoqin & Lee, Hyung-Sool & Feng, Yujie, 2020. "Efficient hydrogen recovery with CoP-NF as cathode in microbial electrolysis cells," Applied Energy, Elsevier, vol. 264(C).
    9. Ding, Lingkan & Wang, Yuchuan & Lin, Hongjian & van Lierop, Leif & Hu, Bo, 2022. "Facilitating solid-state anaerobic digestion of food waste via bio-electrochemical treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    10. Ouyang, Tiancheng & Lu, Jie & Hu, Xiaoyi & Liu, Wenjun & Chen, Jingxian, 2022. "Multi-dimensional performance analysis and efficiency evaluation of paper-based microfluidic fuel cell," Renewable Energy, Elsevier, vol. 187(C), pages 94-108.
    11. Eunjin Jwa & Mijin Kim & Ji-Hyung Han & Namjo Jeong & Hyun-Chul Kim & Yeo-Myeong Yun & Joo-Youn Nam, 2021. "Feasibility of Using Electrodes with Ultralow Pt Loading in Two-Chamber Microbial Electrolysis Cells," Energies, MDPI, vol. 14(22), pages 1-9, November.
    12. Shu, Zhiyong & Liang, Wenqing & Liu, Fan & Lei, Gang & Zheng, Xiaohong & Qian, Hua, 2022. "Diffusion characteristics of liquid hydrogen spills in a crossflow field: Prediction model and experiment," Applied Energy, Elsevier, vol. 323(C).
    13. Qixing Zhou & Ruixiang Li & Xiaolin Zhang & Tian Li, 2022. "Innovative Cost-Effective Nano-NiCo 2 O 4 Cathode Catalysts for Oxygen Reduction in Air–Cathode Microbial Electrochemical Systems," IJERPH, MDPI, vol. 19(18), pages 1-11, September.
    14. René Alejandro Flores-Estrella & Victor Alcaraz-Gonzalez & Andreas Haarstrick, 2022. "A Catalytic Effectiveness Factor for a Microbial Electrolysis Cell Biofilm Model," Energies, MDPI, vol. 15(11), pages 1-18, June.
    15. Kamali, Mohammadreza & Guo, Yutong & Aminabhavi, Tejraj M. & Abbassi, Rouzbeh & Dewil, Raf & Appels, Lise, 2023. "Pathway towards the commercialization of sustainable microbial fuel cell-based wastewater treatment technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8375-:d:700647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.