IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipas0306261921012964.html
   My bibliography  Save this article

Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route

Author

Listed:
  • Maggio, G.
  • Squadrito, G.
  • Nicita, A.

Abstract

As emphasised by the crisis caused by the COVID-19 pandemic, medical oxygen is an essential health commodity. The purpose of this study is the application of Renewable Energy Sources (RES)-based (photovoltaic-powered) water electrolysis plant for oxygen production in hospitals to self-produce the amount of oxygen they need, and – in particular – to define when this choice could be economically competitive with the current medical gas market. The proposed plant is able to produce oxygen and to store energy in hydrogen form at the same time, proposing a new approach in RES applications. Therefore, we calculated as a function of the hospital size (number of beds, up to 500) what should be the market price of oxygen above which the self-production of oxygen is economically profitable (assuming a break-event point of 15 years). Hydrogen is considered a by-product allowing to increase the system efficiency and supplying extra services. The results demonstrated that, assuming a selling price of 3 €/kg for the hydrogen (co)-produced by the plant, the on-site production of medical oxygen could be an interesting alternative compared to purchasing from the local gas resellers, if its market price is higher than 3–4 €/kg. Since this value is in line with current prices established for ex-factory oxygen by some national regulatory authorities (e.g., AIFA), we can conclude that the proposed RES-based electrolysis system is a green and economically feasible solution for oxygen production in hospitals, able also to increase hospital resilience against energy and oxygen shortage.

Suggested Citation

  • Maggio, G. & Squadrito, G. & Nicita, A., 2022. "Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route," Applied Energy, Elsevier, vol. 306(PA).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012964
    DOI: 10.1016/j.apenergy.2021.117993
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921012964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117993?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).
    2. McPherson, Madeleine & Johnson, Nils & Strubegger, Manfred, 2018. "The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions," Applied Energy, Elsevier, vol. 216(C), pages 649-661.
    3. Le Duigou, Alain & Quéméré, Marie-Marguerite & Marion, Pierre & Menanteau, Philippe & Decarre, Sandrine & Sinegre, Laure & Nadau, Lionel & Rastetter, Aline & Cuni, Aude & Mulard, Philippe & Antoine, L, 2013. "Hydrogen pathways in France: Results of the HyFrance3 Project," Energy Policy, Elsevier, vol. 62(C), pages 1562-1569.
    4. Squadrito, G. & Nicita, A. & Maggio, G., 2021. "A size-dependent financial evaluation of green hydrogen-oxygen co-production," Renewable Energy, Elsevier, vol. 163(C), pages 2165-2177.
    5. Liu, Jinhui & Xu, Zhanbo & Wu, Jiang & Liu, Kun & Guan, Xiaohong, 2021. "Optimal planning of distributed hydrogen-based multi-energy systems," Applied Energy, Elsevier, vol. 281(C).
    6. Kavadias, K.A. & Apostolou, D. & Kaldellis, J.K., 2018. "Modelling and optimisation of a hydrogen-based energy storage system in an autonomous electrical network," Applied Energy, Elsevier, vol. 227(C), pages 574-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cameron Campbell-Stanway & Victor Becerra & Shanker Prabhu & James Bull, 2024. "Investigating the Role of Byproduct Oxygen in UK-Based Future Scenario Models for Green Hydrogen Electrolysis," Energies, MDPI, vol. 17(2), pages 1-38, January.
    2. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic simulation and thermoeconomic analysis of a power to gas system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2024. "A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell," Energies, MDPI, vol. 17(5), pages 1-21, February.
    4. Squadrito, Gaetano & Maggio, Gaetano & Nicita, Agatino, 2023. "The green hydrogen revolution," Renewable Energy, Elsevier, vol. 216(C).
    5. Onwuemezie, Linus & Gohari Darabkhani, Hamidreza, 2024. "Biohydrogen production from solar and wind assisted AF-MEC coupled with MFC, PEM electrolysis of H2O and H2 fuel cell for small-scale applications," Renewable Energy, Elsevier, vol. 224(C).
    6. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Renewable smart energy network: A thermoeconomic comparison between conventional lithium-ion batteries and reversible solid oxide fuel cells," Renewable Energy, Elsevier, vol. 214(C), pages 74-95.
    7. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    8. Peter Reithuber & Florian Poimer & Stefan Brandstätter & Eberhard Schutting & Simon Buchberger & Alexander Trattner & Helmut Eichlseder, 2023. "Experimental Investigation of the Influence of NO on a PEM Fuel Cell System and Voltage Recovery Strategies," Energies, MDPI, vol. 16(9), pages 1-18, April.
    9. Mewafy, Abdelrahman & Ismael, Islam & Kaddah, Sahar S. & Hu, Weihao & Chen, Zhe & Abulanwar, Sayed, 2024. "Optimal design of multiuse hybrid microgrids power by green hydrogen–ammonia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. José Carlos Curvelo Santana & Pedro Gerber Machado & Cláudio Augusto Oller do Nascimento & Celma de Oliveira Ribeiro, 2023. "Economic and Environmental Assessment of Hydrogen Production from Brazilian Energy Grid," Energies, MDPI, vol. 16(9), pages 1-21, April.
    11. Domenico Mazzeo & Cristina Baglivo & Simone Panico & Matteo Manieri & Nicoletta Matera & Paolo Maria Congedo, 2023. "Eco-Sustainable Energy Production in Healthcare: Trends and Challenges in Renewable Energy Systems," Energies, MDPI, vol. 16(21), pages 1-20, October.
    12. Tom Terlouw & Lorenzo Rosa & Christian Bauer & Russell McKenna, 2024. "Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Ruhnau, Oliver, 2022. "How flexible electricity demand stabilizes wind and solar market values: The case of hydrogen electrolyzers," Applied Energy, Elsevier, vol. 307(C).
    14. Lanre Olatomiwa & Ahmad A. Sadiq & Omowunmi Mary Longe & James G. Ambafi & Kufre Esenowo Jack & Toyeeb Adekunle Abd'azeez & Samuel Adeniyi, 2022. "An Overview of Energy Access Solutions for Rural Healthcare Facilities," Energies, MDPI, vol. 15(24), pages 1-23, December.
    15. Merabet, Nour Hane & Kerboua, Kaouther & Hoinkis, Jan, 2024. "Hydrogen production from wastewater: A comprehensive review of conventional and solar powered technologies," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changcheng Li & Haoran Li & Hao Yue & Jinfeng Lv & Jian Zhang, 2024. "Flexibility Value of Multimodal Hydrogen Energy Utilization in Electric–Hydrogen–Thermal Systems," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    2. Apostolou, D. & Xydis, G., 2019. "A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    4. Wang, Yuwei & Song, Minghao & Jia, Mengyao & Li, Bingkang & Fei, Haoran & Zhang, Yiyue & Wang, Xuejie, 2023. "Multi-objective distributionally robust optimization for hydrogen-involved total renewable energy CCHP planning under source-load uncertainties," Applied Energy, Elsevier, vol. 342(C).
    5. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    6. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    7. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank," Applied Energy, Elsevier, vol. 278(C).
    8. Zhang, Peiye & Liu, Ming & Mu, Ruiqi & Yan, Junjie, 2024. "Exergy-based control strategy design and dynamic performance enhancement for parabolic trough solar receiver-reactor of methanol decomposition reaction," Renewable Energy, Elsevier, vol. 224(C).
    9. Lidia Gawlik & Eugeniusz Mokrzycki, 2021. "Analysis of the Polish Hydrogen Strategy in the Context of the EU’s Strategic Documents on Hydrogen," Energies, MDPI, vol. 14(19), pages 1-15, October.
    10. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    11. Chen, Huayi & Ma, Tieju, 2021. "Technology adoption and carbon emissions with dynamic trading among heterogeneous agents," Energy Economics, Elsevier, vol. 99(C).
    12. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    13. Coker, Phil J. & Bloomfield, Hannah C. & Drew, Daniel R. & Brayshaw, David J., 2020. "Interannual weather variability and the challenges for Great Britain’s electricity market design," Renewable Energy, Elsevier, vol. 150(C), pages 509-522.
    14. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    15. Guangsheng Pan & Qinran Hu & Wei Gu & Shixing Ding & Haifeng Qiu & Yuping Lu, 2021. "Assessment of plum rain’s impact on power system emissions in Yangtze-Huaihe River basin of China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. César Berna-Escriche & Carlos Vargas-Salgado & David Alfonso-Solar & Alberto Escrivá-Castells, 2022. "Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    17. Lin, Xi & Zhu, Qi & Leng, Haiyan & Yang, Hongguang & Lyu, Tao & Li, Qian, 2019. "Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank," Applied Energy, Elsevier, vol. 250(C), pages 1065-1072.
    18. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    19. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    20. Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.