IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003549.html
   My bibliography  Save this article

Efficient ethanol production from masson pine sawdust by various organosolv pretreatment and modified pre-hydrolysis simultaneous saccharification and fermentation

Author

Listed:
  • Xie, Xinyu
  • Song, Kai
  • Wang, Jing
  • Hu, Jinguang
  • Wu, Shufang
  • Chu, Qiulu

Abstract

Pretreatment is a key step in lignocellulosic biorefinery. In this study, the combination of organosolv pretreatment and lignin repolymerization inhibitor was put forward to fractionate the lignocellulosic biomass, providing readily hydrolyzed substrate. Results showed that, acidic 1,4-butanediol pretreatment extensively removed lignin from softwood, reducing the physical blockage effect of lignin. Besides, lignin repolymerization inhibitors were employed to modify lignin, giving rise to lower unproductive binding effect of lignin. As a result, maximum 79.9 ± 0.3 % of original lignin in raw biomass could be removed, and 97.9 ± 0.5 % of glucan in pretreated solid could be converted into fermentable sugars after acidic butanediol pretreatment assisted by sodium 2-naphthol-7-sulphonate and enzymatic hydrolysis at 2 % glucan loading. Furthermore, a modified pre-hysrolysis simultaneous saccharification and fermentation process at 10 % glucan loading produced 45.6 ± 1.7 g/L ethanol, with ethanol yield of 18.7 ± 0.4 g/100 g raw biomass. Finally, the mass balance revealed that the lignocellulosic biorefinery based on acidic butanediol pretreatment assisted by sodium 2-naphthol-7-sulphonate could achieve full utilization of lignocellulosic components to co-produce ethanol, lignin materials and hemicellulose-derived mono-saccharides.

Suggested Citation

  • Xie, Xinyu & Song, Kai & Wang, Jing & Hu, Jinguang & Wu, Shufang & Chu, Qiulu, 2024. "Efficient ethanol production from masson pine sawdust by various organosolv pretreatment and modified pre-hydrolysis simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003549
    DOI: 10.1016/j.renene.2024.120289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Romero-García, J.M. & Susmozas, A. & Padilla-Rascón, C. & Manzanares, P. & Castro, E. & Oliva, J.M. & Romero, I., 2022. "Ethanol production from olive stones using different process strategies," Renewable Energy, Elsevier, vol. 194(C), pages 1174-1183.
    2. Sheng, Yequan & Tan, Xin & Gu, Yuanjie & Zhou, Xin & Tu, Maobing & Xu, Yong, 2021. "Effect of ascorbic acid assisted dilute acid pretreatment on lignin removal and enzyme digestibility of agricultural residues," Renewable Energy, Elsevier, vol. 163(C), pages 732-739.
    3. Fan, Meishan & Lei, Ming & Xie, Jun & Zhang, Hongdan, 2022. "Further insights into the solubilization and surface modification of lignin on enzymatic hydrolysis and ethanol production," Renewable Energy, Elsevier, vol. 186(C), pages 646-655.
    4. Yuan, Xinchuan & Shen, Guannan & Chen, Sitong & Chen, Xiangxue & Zhang, Chengcheng & Liu, Shuangmei & Jin, Mingjie, 2022. "Modified simultaneous saccharification and co-fermentation of DLC pretreated corn stover for high-titer cellulosic ethanol production without water washing or detoxifying pretreated biomass," Energy, Elsevier, vol. 247(C).
    5. Choi, June-Ho & Jang, Soo-Kyeong & Kim, Jong-Hwa & Park, Se-Yeong & Kim, Jong-Chan & Jeong, Hanseob & Kim, Ho-Yong & Choi, In-Gyu, 2019. "Simultaneous production of glucose, furfural, and ethanol organosolv lignin for total utilization of high recalcitrant biomass by organosolv pretreatment," Renewable Energy, Elsevier, vol. 130(C), pages 952-960.
    6. Chu, Qiulu & Tong, Wenyao & Wu, Shufang & Jin, Yongcan & Hu, Jinguang & Song, Kai, 2021. "Modification of lignin by various additives to mitigate lignin inhibition for improved enzymatic digestibility of dilute acid pretreated hardwood," Renewable Energy, Elsevier, vol. 177(C), pages 992-1000.
    7. Borujeni, Nasim Espah & Alavijeh, Masih Karimi & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "A novel integrated biorefinery approach for apple pomace valorization with significant socioeconomic benefits," Renewable Energy, Elsevier, vol. 208(C), pages 275-286.
    8. Tong, Wenyao & Chu, Qiulu & Li, Jin & Xie, Xinyu & Wang, Jing & Jin, Yongcan & Wu, Shufang & Hu, Jinguang & Song, Kai, 2022. "Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass," Renewable Energy, Elsevier, vol. 187(C), pages 123-134.
    9. Wang, Kai & Yang, Chundong & Xu, Xin & Lai, Chenhuan & Zhang, Daihui & Yong, Qiang, 2022. "2-Naphthol modification alleviated the inhibition of ethanol organosolv lignin on enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 200(C), pages 767-776.
    10. Stafford, W. & De Lange, W. & Nahman, A. & Chunilall, V. & Lekha, P. & Andrew, J. & Johakimu, J. & Sithole, B. & Trotter, D., 2020. "Forestry biorefineries," Renewable Energy, Elsevier, vol. 154(C), pages 461-475.
    11. Lv, Yanting & Chen, Zhengyu & Wang, Huan & Xiao, Yongcang & Ling, Rongxin & Gong, Murong & Wei, Weiqi, 2022. "Enhancement of glucose production from sugarcane bagasse through an HCl-catalyzed ethylene glycol pretreatment and Tween 80," Renewable Energy, Elsevier, vol. 194(C), pages 495-503.
    12. Elsagan, Zahwa A. & Ali, Rehab M. & El-Naggar, Mohamed A. & El-Ashtoukhy, E.-S.Z. & AbdElhafez, Sara E., 2023. "New perspectives for maximizing sustainable bioethanol production from corn stover," Renewable Energy, Elsevier, vol. 209(C), pages 608-618.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Wenyao & Chu, Qiulu & Li, Jin & Xie, Xinyu & Wang, Jing & Jin, Yongcan & Wu, Shufang & Hu, Jinguang & Song, Kai, 2022. "Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass," Renewable Energy, Elsevier, vol. 187(C), pages 123-134.
    2. So-Yeon Jeong & Jae-Won Lee, 2021. "Effects of Sugars and Degradation Products Derived from Lignocellulosic Biomass on Maleic Acid Production," Energies, MDPI, vol. 14(4), pages 1-11, February.
    3. Madadi, Meysam & Elsayed, Mahdy & Song, Guojie & Bakr, Mahmoud M. & Qin, Yuanhang & Sun, Fubao & Abomohra, Abdelfatah, 2023. "Holistic lignocellulosic biorefinery approach for dual production of bioethanol and xylonic acid coupled with efficient dye removal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Sekoai, Patrick T. & Chunilall, Viren & Msele, Kwanele & Buthelezi, Lindiswa & Johakimu, Jonas & Andrew, Jerome & Zungu, Manqoba & Moloantoa, Karabelo & Maningi, Nontuthuko & Habimana, Olivier & Swart, 2023. "Biowaste biorefineries in South Africa: Current status, opportunities, and research and development needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Liu, Tian & Wang, Peipei & Tian, Jing & Guo, Jiaqi & Zhu, Wenyuan & Bushra, Rani & Huang, Caoxing & Jin, Yongcan & Xiao, Huining & Song, Junlong, 2024. "Emerging role of additives in lignocellulose enzymatic saccharification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    7. Fan, Meishan & Li, Jun & Liu, Zhu & Li, Caiqun & Zhang, Hongdan & Xie, Jun & Chen, Yong, 2023. "Evaluating performance of CrCl3-catalyzed ethanol pretreatment of poplar on cellulose conversion," Renewable Energy, Elsevier, vol. 216(C).
    8. Kourkoumpas, Dimitrios-Sotirios & Sagani, Angeliki & Hull, Angelica & Hull, Andrew & Karellas, Sotirios & Grammelis, Panagiotis, 2024. "Life cycle assessment of an innovative alcohol-to-jet process: The case for retrofitting a bioethanol plant for sustainable aviation fuel production," Renewable Energy, Elsevier, vol. 228(C).
    9. Castro, Eulogio & Rabelo, Camila A.B. Silva & Padilla-Rascón, Carmen & Vidal, Alfonso M. & López-Linares, Juan C. & Varesche, Maria Bernadete A. & Romero, Inmaculada, 2023. "Biological hydrogen and furfural production from steam-exploded vine shoots," Renewable Energy, Elsevier, vol. 219(P1).
    10. Chu, Qiulu & Tong, Wenyao & Wu, Shufang & Jin, Yongcan & Hu, Jinguang & Song, Kai, 2021. "Modification of lignin by various additives to mitigate lignin inhibition for improved enzymatic digestibility of dilute acid pretreated hardwood," Renewable Energy, Elsevier, vol. 177(C), pages 992-1000.
    11. Jomnonkhaow, Umarin & Sittijunda, Sureewan & Reungsang, Alissara, 2022. "Assessment of organosolv, hydrothermal, and combined organosolv and hydrothermal with enzymatic pretreatment to increase the production of biogas from Napier grass and Napier silage," Renewable Energy, Elsevier, vol. 181(C), pages 1237-1249.
    12. Nasib Qureshi & Xiaoqing Lin & Shunhui Tao & Siqing Liu & Haibo Huang & Nancy N. Nichols, 2023. "Can Xylose Be Fermented to Biofuel Butanol in Continuous Long-Term Reactors: If Not, What Options Are There?," Energies, MDPI, vol. 16(13), pages 1-21, June.
    13. Alfred Błaszczyk & Sylwia Sady & Bogdan Pachołek & Dominika Jakubowska & Mariola Grzybowska-Brzezińska & Małgorzata Krzywonos & Stanisław Popek, 2024. "Sustainable Management Strategies for Fruit Processing Byproducts for Biorefineries: A Review," Sustainability, MDPI, vol. 16(5), pages 1-22, February.
    14. Xia, Qiuli & Zhang, Lin & Zhan, Peng & Tong, Zhaohui & Qing, Yan & He, Jiaying & Wu, Zhiping & Wang, Hui & Shao, Lishu & Liu, Na, 2024. "Combination of microwave with acid deep eutectic solvent pretreatment for reed (Phragmites australis) fractionation," Renewable Energy, Elsevier, vol. 225(C).
    15. Oliveira, Kátia D. & Battiston, Lucas L. & Battiston, Caroline B.N. & Prauchner, Marcos J. & Martins, Gesley A.V. & Carneiro, Mayara E.B. & Ávila-Neto, Cícero N. & Muniz, Graciela I.B., 2024. "Esterification of crude tall oil catalyzed by Beta zeolite," Renewable Energy, Elsevier, vol. 228(C).
    16. Lv, Yanting & Chen, Zhengyu & Wang, Huan & Xiao, Yongcang & Ling, Rongxin & Gong, Murong & Wei, Weiqi, 2022. "Enhancement of glucose production from sugarcane bagasse through an HCl-catalyzed ethylene glycol pretreatment and Tween 80," Renewable Energy, Elsevier, vol. 194(C), pages 495-503.
    17. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    18. Oliva, A. & Tan, L.C. & Papirio, S. & Esposito, G. & Lens, P.N.L., 2021. "Effect of methanol-organosolv pretreatment on anaerobic digestion of lignocellulosic materials," Renewable Energy, Elsevier, vol. 169(C), pages 1000-1012.
    19. Wang, Kai & Yang, Chundong & Xu, Xin & Lai, Chenhuan & Zhang, Daihui & Yong, Qiang, 2022. "2-Naphthol modification alleviated the inhibition of ethanol organosolv lignin on enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 200(C), pages 767-776.
    20. Liu, Xu & Guo, Yang & Dasgupta, Anish & He, Haoran & Xu, Donghai & Guan, Qingqing, 2022. "Algal bio-oil refinery: A review of heterogeneously catalyzed denitrogenation and demetallization reactions for renewable process," Renewable Energy, Elsevier, vol. 183(C), pages 627-650.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.