IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i13p4945-d1179422.html
   My bibliography  Save this article

Can Xylose Be Fermented to Biofuel Butanol in Continuous Long-Term Reactors: If Not, What Options Are There?

Author

Listed:
  • Nasib Qureshi

    (Bioenergy Research Unit, National Center for Agricultural Utilization Research (NCAUR), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 1815 N University Street, Peoria, IL 61604, USA)

  • Xiaoqing Lin

    (Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China)

  • Shunhui Tao

    (Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, No. 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China)

  • Siqing Liu

    (Renewable Products Technology Research Unit, National Center for Agricultural Utilization Research (NCAUR), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 1815 N University Street, Peoria, IL 61604, USA)

  • Haibo Huang

    (Department of Food Science & Technology, Virginia Polytechnic Institute and State University, 1230 Washington Street SW, Blacksburg, VA 24061, USA)

  • Nancy N. Nichols

    (Bioenergy Research Unit, National Center for Agricultural Utilization Research (NCAUR), Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 1815 N University Street, Peoria, IL 61604, USA)

Abstract

This study applied concentrated xylose (60–250 g/L) medium to produce butanol (acetone butanol ethanol, or ABE). A control batch fermentation of 61 g/L initial glucose using Clostridium beijerinckii P260 resulted in a productivity and yield of 0.33 g/L·h and 0.43 g/g, respectively. Use of 60 g/L xylose in a batch system resulted in productivity and yield of 0.26 g/L·h, and 0.40 g/g, respectively. In these two experiments, the culture fermented 89.3% glucose and 83.6% of xylose, respectively. When ABE recovery was coupled with fermentation for continuous solvent removal, the culture fermented all the added xylose (60 g/L). This system resulted in a productivity and yield of 0.66 g/L·h and 0.44 g/g, respectively. When the sugar concentration was further increased above 100 g/L, only a small fraction of the sugar was fermented in batch cultures without product removal. However, with simultaneous product removal, all the xylose (150 g/L) was fermented provided the culture was fed with nutrients intermittently. In this system, 66.32 g/L ABE was produced from 150 g/L xylose with a productivity of 0.44 g/L·h and yield of 0.44 g/g. Using the integrated culture system allowed sugar consumption to be increased by 300% (150 g/L). The continuous system using xylose as a feed did not sustain and after 36 days (864 h) of fermentation, it produced only 2–3 g/L ABE. Rather, the culture became acidogenic and produced 4–5 g/L acids (acetic and butyric). This study suggested that xylose be fermented in batch reactors coupled with simultaneous product recovery rather than in continuous reactors.

Suggested Citation

  • Nasib Qureshi & Xiaoqing Lin & Shunhui Tao & Siqing Liu & Haibo Huang & Nancy N. Nichols, 2023. "Can Xylose Be Fermented to Biofuel Butanol in Continuous Long-Term Reactors: If Not, What Options Are There?," Energies, MDPI, vol. 16(13), pages 1-21, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4945-:d:1179422
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/13/4945/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/13/4945/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Yao & Zheng, Xiaojie & Tao, Shunhui & Hu, Lei & Zhang, Xiaodong & Lin, Xiaoqing, 2021. "Process optimization for deep eutectic solvent pretreatment and enzymatic hydrolysis of sugar cane bagasse for cellulosic ethanol fermentation," Renewable Energy, Elsevier, vol. 177(C), pages 259-267.
    2. Sara E. AbdElhafez & Tarek Taha & Ahmed E. Mansy & Eman El-Desouky & Mohamed A. Abu-Saied & Khloud Eltaher & Ali Hamdy & Gomaa El Fawal & Amr Gamal & Aly M. Hashim & Abdallah S. Elgharbawy & Mona M. A, 2022. "Experimental Optimization with the Emphasis on Techno-Economic Analysis of Production and Purification of High Value-Added Bioethanol from Sustainable Corn Stover," Energies, MDPI, vol. 15(17), pages 1-33, August.
    3. Elsagan, Zahwa A. & Ali, Rehab M. & El-Naggar, Mohamed A. & El-Ashtoukhy, E.-S.Z. & AbdElhafez, Sara E., 2023. "New perspectives for maximizing sustainable bioethanol production from corn stover," Renewable Energy, Elsevier, vol. 209(C), pages 608-618.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahak, B.K. & Preetam, S. & Sharma, Deepa & Shukla, S.K. & Syväjärvi, Mikael & Toncu, Dana-Cristina & Tiwari, Ashutosh, 2022. "Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Xie, Xinyu & Song, Kai & Wang, Jing & Hu, Jinguang & Wu, Shufang & Chu, Qiulu, 2024. "Efficient ethanol production from masson pine sawdust by various organosolv pretreatment and modified pre-hydrolysis simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 225(C).
    3. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    4. Kourkoumpas, Dimitrios-Sotirios & Sagani, Angeliki & Hull, Angelica & Hull, Andrew & Karellas, Sotirios & Grammelis, Panagiotis, 2024. "Life cycle assessment of an innovative alcohol-to-jet process: The case for retrofitting a bioethanol plant for sustainable aviation fuel production," Renewable Energy, Elsevier, vol. 228(C).
    5. Mondal, Sourav & Neogi, Swati & Chakraborty, Saikat, 2024. "Optimization of reactor parameters for amplifying synergy in enzymatic co-hydrolysis and microbial co-fermentation of lignocellulosic agro-residues," Renewable Energy, Elsevier, vol. 225(C).
    6. Elsagan, Zahwa A. & Ali, Rehab M. & El-Naggar, Mohamed A. & El-Ashtoukhy, E.-S.Z. & AbdElhafez, Sara E., 2023. "New perspectives for maximizing sustainable bioethanol production from corn stover," Renewable Energy, Elsevier, vol. 209(C), pages 608-618.
    7. Qian, Qian & Luo, Zhongyang & Sun, Haoran & Wei, Qi & Shi, Jingkang & Li, Longfei & Wang, Kaige & Zhou, Jinsong, 2024. "Process evaluation of simulated novel cellulosic ethanol biorefineries coupled with lignin thermochemical conversion," Renewable Energy, Elsevier, vol. 231(C).
    8. Sun, Zhen & Wang, Junxiang & Lu, Sen & Zhang, Guan, 2022. "Enzymatic biomass hydrolysis assisted photocatalytic H2 production from water employing porous carbon doped brookite/anatase heterophase titania photocatalyst," Renewable Energy, Elsevier, vol. 197(C), pages 151-160.
    9. Islam, Md Khairul & Rehman, Shazia & Guan, Jianyu & Lau, Chun-Yin & Tse, Ho-Yin & Yeung, Chi Shun & Leu, Shao-Yuan, 2021. "Biphasic pretreatment for energy and carbon efficient conversion of lignocellulose into bioenergy and reactive lignin," Applied Energy, Elsevier, vol. 303(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:13:p:4945-:d:1179422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.