IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v194y2022icp1174-1183.html
   My bibliography  Save this article

Ethanol production from olive stones using different process strategies

Author

Listed:
  • Romero-García, J.M.
  • Susmozas, A.
  • Padilla-Rascón, C.
  • Manzanares, P.
  • Castro, E.
  • Oliva, J.M.
  • Romero, I.

Abstract

In this work, olive stone is used as a lignocellulosic raw material for ethanol production. In order to optimise the ethanol production yield, three different process strategies are studied considering the different streams produced in a sequential pretreatment of olive stone with dilute sulfuric acid/steam explosion (SE), which has been previously tested and demonstrated to be an effective fractionation strategy for olive stone biomass. Strategy 1 features fermentation with E. coli SL100 of the mixture of the detoxified prehydrolysate from the dilute sulfuric acid stage and the enzymatic hydrolysate of WIS and detoxified SE liquid fractions. Strategy 2 consists of fermentation with E. coli SL100 separately from the prehydrolysate and the enzymatic hydrolysate of WIS and detoxified SE liquid fractions. Strategy 3 considers fermentation with E. coli SL100 of the prehydrolysate from the acid stage and presaccharification and simultaneous saccharification and fermentation with S. cerevisiae “Ethanol Red” of WIS and detoxified SE liquid fractions. Strategies 2 and 3 reach a similar ethanol production of ∼162 kg/t, which is the highest ethanol yield reported so far from olive stones. The latter strategy uses two different microorganisms that allow an ethanol concentration close to 30 g/L.

Suggested Citation

  • Romero-García, J.M. & Susmozas, A. & Padilla-Rascón, C. & Manzanares, P. & Castro, E. & Oliva, J.M. & Romero, I., 2022. "Ethanol production from olive stones using different process strategies," Renewable Energy, Elsevier, vol. 194(C), pages 1174-1183.
  • Handle: RePEc:eee:renene:v:194:y:2022:i:c:p:1174-1183
    DOI: 10.1016/j.renene.2022.06.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008540
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pablo Doménech & Aleta Duque & Isabel Higueras & Raquel Iglesias & Paloma Manzanares, 2020. "Biorefinery of the Olive Tree—Production of Sugars from Enzymatic Hydrolysis of Olive Stone Pretreated by Alkaline Extrusion," Energies, MDPI, vol. 13(17), pages 1-13, September.
    2. Castro, Eulogio & Nieves, Ismael U. & Mullinnix, Mike T. & Sagues, William J. & Hoffman, Ralph W. & Fernández-Sandoval, Marco T. & Tian, Zhuoli & Rockwood, Donald L. & Tamang, Bijay & Ingram, Lonnie O, 2014. "Optimization of dilute-phosphoric-acid steam pretreatment of Eucalyptus benthamii for biofuel production," Applied Energy, Elsevier, vol. 125(C), pages 76-83.
    3. Manzanares, P. & Ballesteros, I. & Negro, M.J. & González, A. & Oliva, J.M. & Ballesteros, M., 2020. "Processing of extracted olive oil pomace residue by hydrothermal or dilute acid pretreatment and enzymatic hydrolysis in a biorefinery context," Renewable Energy, Elsevier, vol. 145(C), pages 1235-1245.
    4. Cuevas, Manuel & Sánchez, Sebastián & García, Juan F. & Baeza, Jaime & Parra, Carolina & Freer, Juanita, 2015. "Enhanced ethanol production by simultaneous saccharification and fermentation of pretreated olive stones," Renewable Energy, Elsevier, vol. 74(C), pages 839-847.
    5. Maria José Negro & Cristina Álvarez & Pablo Doménech & Raquel Iglesias & Ignacio Ballesteros, 2020. "Sugars Production from Municipal Forestry and Greening Wastes Pretreated by an Integrated Steam Explosion-Based Process," Energies, MDPI, vol. 13(17), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castro, Eulogio & Rabelo, Camila A.B. Silva & Padilla-Rascón, Carmen & Vidal, Alfonso M. & López-Linares, Juan C. & Varesche, Maria Bernadete A. & Romero, Inmaculada, 2023. "Biological hydrogen and furfural production from steam-exploded vine shoots," Renewable Energy, Elsevier, vol. 219(P1).
    2. Xie, Xinyu & Song, Kai & Wang, Jing & Hu, Jinguang & Wu, Shufang & Chu, Qiulu, 2024. "Efficient ethanol production from masson pine sawdust by various organosolv pretreatment and modified pre-hydrolysis simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Doménech & Aleta Duque & Isabel Higueras & Raquel Iglesias & Paloma Manzanares, 2020. "Biorefinery of the Olive Tree—Production of Sugars from Enzymatic Hydrolysis of Olive Stone Pretreated by Alkaline Extrusion," Energies, MDPI, vol. 13(17), pages 1-13, September.
    2. Shen, Guannan & Yuan, Xinchuan & Chen, Sitong & Liu, Shuangmei & Jin, Mingjie, 2022. "High titer cellulosic ethanol production from sugarcane bagasse via DLCA pretreatment and process development without washing/detoxifying pretreated biomass," Renewable Energy, Elsevier, vol. 186(C), pages 904-913.
    3. Solarte-Toro, Juan Camilo & Romero-García, Juan Miguel & Martínez-Patiño, Juan Carlos & Ruiz-Ramos, Encarnación & Castro-Galiano, Eulogio & Cardona-Alzate, Carlos Ariel, 2019. "Acid pretreatment of lignocellulosic biomass for energy vectors production: A review focused on operational conditions and techno-economic assessment for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 587-601.
    4. Luo, Jing & Ma, Yicong & Xu, Yong, 2020. "Valorization of apple pomace using a two-step slightly acidic processing strategy," Renewable Energy, Elsevier, vol. 152(C), pages 793-798.
    5. Guilherme, Ederson Paulo Xavier & Zanphorlin, Leticia Maria & Sousa, Amanda Silva & Miyamoto, Renan Yuji & Bruziquesi, Carlos Giovani Oliveira & Mesquita, Bruna Mara Aparecida de Carvalho & Santos, Se, 2022. "Simultaneous saccharification isomerization and Co-fermentation – SSICF: A new process concept for second-generation ethanol biorefineries combining immobilized recombinant enzymes and non-GMO Sacchar," Renewable Energy, Elsevier, vol. 182(C), pages 274-284.
    6. Cuevas, Manuel & Martínez-Cartas, María Lourdes & Pérez-Villarejo, Luis & Hernández, Lucía & García-Martín, Juan Francisco & Sánchez, Sebastián, 2019. "Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning," Renewable Energy, Elsevier, vol. 132(C), pages 911-920.
    7. Cybulska, Iwona & Brudecki, Grzegorz P. & Zembrzuska, Joanna & Schmidt, Jens Ejbye & Lopez, Celia Garcia-Banos & Thomsen, Mette Hedegaard, 2017. "Organosolv delignification of agricultural residues (date palm fronds, Phoenix dactylifera L.) of the United Arab Emirates," Applied Energy, Elsevier, vol. 185(P2), pages 1040-1050.
    8. Dong, Chengyu & Wang, Ying & Chan, Ka-Lai & Bhatia, Akanksha & Leu, Shao-Yuan, 2018. "Temperature profiling to maximize energy yield with reduced water input in a lignocellulosic ethanol biorefinery," Applied Energy, Elsevier, vol. 214(C), pages 63-72.
    9. Zhang, Changwei & Wen, Hao & Chen, Changjing & Cai, Di & Fu, Chaohui & Li, Ping & Qin, Peiyong & Tan, Tianwei, 2019. "Simultaneous saccharification and juice co-fermentation for high-titer ethanol production using sweet sorghum stalk," Renewable Energy, Elsevier, vol. 134(C), pages 44-53.
    10. Delon Konan & Ekoun Koffi & Adama Ndao & Eric Charles Peterson & Denis Rodrigue & Kokou Adjallé, 2022. "An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass," Energies, MDPI, vol. 15(9), pages 1-25, April.
    11. Zhang, Changwei & Chen, Huidong & Pang, Siyu & Su, Changsheng & Lv, Meng & An, Na & Wang, Kua & Cai, Di & Qin, Peiyong, 2020. "Importance of redefinition of corn stover harvest time to enhancing non-food bio-ethanol production," Renewable Energy, Elsevier, vol. 146(C), pages 1444-1450.
    12. Hashemi, Seyed Sajad & Mirmohamadsadeghi, Safoora & Karimi, Keikhosro, 2020. "Biorefinery development based on whole safflower plant," Renewable Energy, Elsevier, vol. 152(C), pages 399-408.
    13. Zhu, Shengdong & Huang, Wenjing & Huang, Wangxiang & Wang, Ke & Chen, Qiming & Wu, Yuanxin, 2015. "Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent," Applied Energy, Elsevier, vol. 154(C), pages 190-196.
    14. Deslin Nadar & Kubendren Naicker & David Lokhat, 2020. "Ultrasonically-Assisted Dissolution of Sugarcane Bagasse during Dilute Acid Pretreatment: Experiments and Kinetic Modeling," Energies, MDPI, vol. 13(21), pages 1-18, October.
    15. Diego Cardoza & Inmaculada Romero & Teresa Martínez & Encarnación Ruiz & Francisco J. Gallego & Juan Carlos López-Linares & Paloma Manzanares & Eulogio Castro, 2021. "Location of Biorefineries Based on Olive-Derived Biomass in Andalusia, Spain," Energies, MDPI, vol. 14(11), pages 1-16, May.
    16. Xu, Ling-Hua & Ma, Cheng-Ye & Zhang, Chen & Xu, Ying & Wen, Jia-Long & Yuan, Tong-Qi, 2022. "An integrated acetic acid-catalyzed hydrothermal-pretreatment (AAP) and rapid ball-milling for producing high-yield of xylo-oligosaccharides, fermentable glucose and lignin from poplar wood," Renewable Energy, Elsevier, vol. 201(P1), pages 691-699.
    17. Canabarro, Nicholas I. & Alessio, Cláudia & Foletto, Edson L. & Kuhn, Raquel C. & Priamo, Wagner L. & Mazutti, Marcio A., 2017. "Ethanol production by solid-state saccharification and fermentation in a packed-bed bioreactor," Renewable Energy, Elsevier, vol. 102(PA), pages 9-14.
    18. Romaní, Aloia & Ruiz, Héctor A. & Teixeira, José A. & Domingues, Lucília, 2016. "Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach," Renewable Energy, Elsevier, vol. 95(C), pages 1-9.
    19. Su, Changsheng & Qi, Li & Cai, Di & Chen, Bo & Chen, Huidong & Zhang, Changwei & Si, Zhihao & Wang, Ze & Li, Guozhen & Qin, Peiyong, 2020. "Integrated ethanol fermentation and acetone-butanol-ethanol fermentation using sweet sorghum bagasse," Renewable Energy, Elsevier, vol. 162(C), pages 1125-1131.
    20. Mesa, Leyanis & Martínez, Yenisleidy & Barrio, Edenny & González, Erenio, 2017. "Desirability function for optimization of Dilute Acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations," Applied Energy, Elsevier, vol. 198(C), pages 299-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:194:y:2022:i:c:p:1174-1183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.