IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v225y2024ics0960148124003513.html
   My bibliography  Save this article

Combination of microwave with acid deep eutectic solvent pretreatment for reed (Phragmites australis) fractionation

Author

Listed:
  • Xia, Qiuli
  • Zhang, Lin
  • Zhan, Peng
  • Tong, Zhaohui
  • Qing, Yan
  • He, Jiaying
  • Wu, Zhiping
  • Wang, Hui
  • Shao, Lishu
  • Liu, Na

Abstract

The cost-effective and low-carbon fractionation of lignocellulosic biomass will enhance the economic viability of bio-refining. To achieve efficient reed fractionation under favorable conditions, microwave-assisted choline chloride and p-toluene sulfonic acid (M-ChCl/p-TsOH) pretreatment was employed. The fractionation of reed components demonstrated higher effectiveness with M-ChCl/p-TsOH pretreatment compared to conventional DES pretreatment. Under M-ChCl/p-TsOH conditions, a high hemicellulose removal rate (∼90%) and delignification rate (∼65%) were achieved while achieving a saccharification rate of 88% during cellulase hydrolysis. Microwave assistance not only significantly reduced reaction time to less than 60 s but also enhanced the pretreatment efficacy. Furthermore, the obtained lignin products consisted of low-polymerization lignin (MW < 800 g/mol) and acid-soluble lignin, providing a solid foundation for subsequent high-value utilization of lignin. This study provides a promising strategy for the low carbon fractionation of reed using DES, aiming to simultaneously achieve efficient cellulose hydrolysis and obtain tractable lignin.

Suggested Citation

  • Xia, Qiuli & Zhang, Lin & Zhan, Peng & Tong, Zhaohui & Qing, Yan & He, Jiaying & Wu, Zhiping & Wang, Hui & Shao, Lishu & Liu, Na, 2024. "Combination of microwave with acid deep eutectic solvent pretreatment for reed (Phragmites australis) fractionation," Renewable Energy, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003513
    DOI: 10.1016/j.renene.2024.120286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124003513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chu, Qiulu & Tong, Wenyao & Wu, Shufang & Jin, Yongcan & Hu, Jinguang & Song, Kai, 2021. "Modification of lignin by various additives to mitigate lignin inhibition for improved enzymatic digestibility of dilute acid pretreated hardwood," Renewable Energy, Elsevier, vol. 177(C), pages 992-1000.
    2. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Mikulski, Dawid & Kłosowski, Grzegorz, 2023. "Cellulose hydrolysis and bioethanol production from various types of lignocellulosic biomass after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 206(C), pages 168-179.
    4. Sun, Shao-Chao & Xu, Ying & Ma, Cheng-Ye & Zhang, Chen & Zuo, Cheng & Sun, Dan & Wen, Jia-Long & Yuan, Tong-Qi, 2023. "Green and efficient fractionation of bamboo biomass via synergistic hydrothermal-alkaline deep eutectic solvents pretreatment: Valorization of carbohydrates," Renewable Energy, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Xinyu & Song, Kai & Wang, Jing & Hu, Jinguang & Wu, Shufang & Chu, Qiulu, 2024. "Efficient ethanol production from masson pine sawdust by various organosolv pretreatment and modified pre-hydrolysis simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 225(C).
    2. Liu, Tian & Wang, Peipei & Tian, Jing & Guo, Jiaqi & Zhu, Wenyuan & Bushra, Rani & Huang, Caoxing & Jin, Yongcan & Xiao, Huining & Song, Junlong, 2024. "Emerging role of additives in lignocellulose enzymatic saccharification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    3. Xu, Mian & Zhu, Xianqing & Lai, Yiming & Xia, Ao & Huang, Yun & Zhu, Xun & Liao, Qiang, 2024. "Production of hierarchical porous bio‑carbon based on deep eutectic solvent fractionated lignin nanoparticles for high-performance supercapacitor," Applied Energy, Elsevier, vol. 353(PA).
    4. Wang, Kai & Yang, Chundong & Xu, Xin & Lai, Chenhuan & Zhang, Daihui & Yong, Qiang, 2022. "2-Naphthol modification alleviated the inhibition of ethanol organosolv lignin on enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 200(C), pages 767-776.
    5. Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Xiao, Tianyuan & Hou, Minjie & Guo, Xu & Cao, Xinyu & Li, Changgeng & Zhang, Qi & Jia, Wenchao & Sun, Yanning & Guo, Yanzhu & Shi, Haiqiang, 2024. "Recent progress in deep eutectic solvent(DES) fractionation of lignocellulosic components : A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Tong, Wenyao & Chu, Qiulu & Li, Jin & Xie, Xinyu & Wang, Jing & Jin, Yongcan & Wu, Shufang & Hu, Jinguang & Song, Kai, 2022. "Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass," Renewable Energy, Elsevier, vol. 187(C), pages 123-134.
    8. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Wang, Peng & Su, Yan & Tang, Wei & Huang, Caoxing & Lai, Chenhuan & Ling, Zhe & Yong, Qiang, 2022. "Revealing enzymatic digestibility of kraft pretreated larch based on a comprehensive analysis of substrate-related factors," Renewable Energy, Elsevier, vol. 199(C), pages 1461-1468.
    10. Veronika Jančíková & Michal Jablonský & Katarína Voleková & Igor Šurina, 2022. "Summarizing the Effect of Acidity and Water Content of Deep Eutectic Solvent-like Mixtures—A Review," Energies, MDPI, vol. 15(24), pages 1-23, December.
    11. Sikiru, Surajudeen & Abioye, Kunmi Joshua & Adedayo, Habeeb Bolaji & Adebukola, Sikiru Yesirat & Soleimani, Hassan & Anar, M., 2024. "Technology projection in biofuel production using agricultural waste materials as a source of energy sustainability: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:225:y:2024:i:c:s0960148124003513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.