IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124002246.html
   My bibliography  Save this article

Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers

Author

Listed:
  • Kang, Zhenye
  • Yang, Gaoqiang
  • Mo, Jingke

Abstract

Noble metal electrocatalysts are highly preferred for the oxygen evolution reaction (OER) in a proton exchange membrane water electrolysis cell (PEMWE) due to their exceptional catalytic activity and stability. This study proposes a novel thin electrode (NTE) design to enhance the performance of noble metal electrocatalysts for the OER in PEMWE. The NTE utilizes a thin porous transport layer for the direct deposition of Iridium (Ir). Unlike conventional gas diffusion electrodes with deep porous structures that underutilize the catalyst due to limited triple-phase boundary conditions, the flat NTEs with straight-through pores overcome this restriction. The paper compares two deposition methods, electroplating and sputter coating. The in-situ electrochemical properties of NTEs with varying Ir loadings (0.06–1.01 mg cm−2) are investigated. The electroplated NTE demonstrates excellent mass activity, achieving 5.05 A mg−1 at 1.6 V and 80 °C. The NTE exhibits a simple fabrication process and low cost while significantly improving catalyst mass activity. Additionally, the NTE reduces electrode thickness from hundreds of micrometers to only 25 μm. This concept holds great promise for the future advancement of compact and high-efficiency PEMWE electrodes, resulting in reduced cost, volume, and mass of both the electrode itself and the overall system.

Suggested Citation

  • Kang, Zhenye & Yang, Gaoqiang & Mo, Jingke, 2024. "Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002246
    DOI: 10.1016/j.renene.2024.120159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124002246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuannan Wang & Mingcheng Zhang & Zhenye Kang & Lei Shi & Yucheng Shen & Boyuan Tian & Yongcun Zou & Hui Chen & Xiaoxin Zou, 2023. "Nano-metal diborides-supported anode catalyst with strongly coupled TaOx/IrO2 catalytic layer for low-iridium-loading proton exchange membrane electrolyzer," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Woong Hee Lee & Young-Jin Ko & Jung Hwan Kim & Chang Hyuck Choi & Keun Hwa Chae & Hansung Kim & Yun Jeong Hwang & Byoung Koun Min & Peter Strasser & Hyung-Suk Oh, 2021. "High crystallinity design of Ir-based catalysts drives catalytic reversibility for water electrolysis and fuel cells," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Nam Khen Oh & Jihyung Seo & Sangjin Lee & Hyung-Jin Kim & Ungsoo Kim & Junghyun Lee & Young-Kyu Han & Hyesung Park, 2021. "Highly efficient and robust noble-metal free bifunctional water electrolysis catalyst achieved via complementary charge transfer," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Kang, Zhenye & Wang, Hao & Liu, Yanrong & Mo, Jingke & Wang, Min & Li, Jing & Tian, Xinlong, 2022. "Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices," Applied Energy, Elsevier, vol. 317(C).
    5. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    6. Dongshuang Wu & Kohei Kusada & Satoru Yoshioka & Tomokazu Yamamoto & Takaaki Toriyama & Syo Matsumura & Yanna Chen & Okkyun Seo & Jaemyung Kim & Chulho Song & Satoshi Hiroi & Osami Sakata & Toshiaki I, 2021. "Efficient overall water splitting in acid with anisotropic metal nanosheets," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    7. Jason K. Lee & Grace Anderson & Andrew W. Tricker & Finn Babbe & Arya Madan & David A. Cullen & José’ D. Arregui-Mena & Nemanja Danilovic & Rangachary Mukundan & Adam Z. Weber & Xiong Peng, 2023. "Ionomer-free and recyclable porous-transport electrode for high-performing proton-exchange-membrane water electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Boshi & Yang, Yang & Li, Jun & Wang, Yang & Ye, Dingding & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "Computational assessment of response to fluctuating load of renewable energy in proton exchange membrane water electrolyzer," Renewable Energy, Elsevier, vol. 232(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yajing Gu & He Ren & Hongwei Liu & Yonggang Lin & Weifei Hu & Tian Zou & Liyuan Zhang & Luoyang Huang, 2024. "Simulation of a Tidal Current-Powered Freshwater and Energy Supply System for Sustainable Island Development," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
    2. Nicolas Muck & Christoph David & Torsten Knöri, 2023. "Integrating Fiber Sensing for Spatially Resolved Temperature Measurement in Fuel Cells," Energies, MDPI, vol. 17(1), pages 1-17, December.
    3. Lamichhane, Pradeep & Pourali, Nima & Scott, Lauren & Tran, Nam N. & Lin, Liangliang & Gelonch, Marc Escribà & Rebrov, Evgeny V. & Hessel, Volker, 2024. "Critical review: ‘Green’ ethylene production through emerging technologies, with a focus on plasma catalysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Taehyung Koo & Rockkil Ko & Dongwoo Ha & Jaeyoung Han, 2023. "Development of Model-Based PEM Water Electrolysis HILS (Hardware-in-the-Loop Simulation) System for State Evaluation and Fault Detection," Energies, MDPI, vol. 16(8), pages 1-18, April.
    5. Li, Yuxuan & Li, Hongkun & Liu, Weiqun & Zhu, Qiao, 2024. "Optimization of membrane thickness for proton exchange membrane electrolyzer considering hydrogen production efficiency and hydrogen permeation phenomenon," Applied Energy, Elsevier, vol. 355(C).
    6. Liu, Chang & Wrubel, Jacob A. & Padgett, Elliot & Bender, Guido, 2024. "Impacts of PTL coating gaps on cell performance for PEM water electrolyzer," Applied Energy, Elsevier, vol. 356(C).
    7. Zhirong Zhang & Chuanyi Jia & Peiyu Ma & Chen Feng & Jin Yang & Junming Huang & Jiana Zheng & Ming Zuo & Mingkai Liu & Shiming Zhou & Jie Zeng, 2024. "Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    9. Lingxi Zhou & Yangfan Shao & Fang Yin & Jia Li & Feiyu Kang & Ruitao Lv, 2023. "Stabilizing non-iridium active sites by non-stoichiometric oxide for acidic water oxidation at high current density," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Liu, Hongwei & Ren, He & Gu, Yajing & Lin, Yonggang & Hu, Weifei & Song, Jiajun & Yang, Jinhong & Zhu, Zengxin & Li, Wei, 2023. "Design and on-site implementation of an off-grid marine current powered hydrogen production system," Applied Energy, Elsevier, vol. 330(PB).
    11. Li, Qing & He, Yuting & Zhang, Luteng & Pan, Liangming & Sun, Wan & Ma, Zaiyong & Zhu, Longxiang & Lian, Qiang & Tang, Simiao, 2024. "Optimizing oxygen transport in proton exchange membrane water electrolysis through tailored porosity configurations of porous transport layers," Applied Energy, Elsevier, vol. 370(C).
    12. Sadiq, Muhammad & Alshehhi, Reem J. & Urs, Rahul Rajeevkumar & Mayyas, Ahmad T., 2023. "Techno-economic analysis of Green-H2@Scale production," Renewable Energy, Elsevier, vol. 219(P1).
    13. Jivan Thakare & Jahangir Masud, 2022. "Magnéli TiO 2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts," Energies, MDPI, vol. 15(12), pages 1-10, June.
    14. Xu, Boshi & Yang, Yang & Li, Jun & Ye, Dingding & Wang, Yang & Zhang, Liang & Zhu, Xun & Liao, Qiang, 2024. "A comprehensive study of parameters distribution in a short PEM water electrolyzer stack utilizing a full-scale multi-physics model," Energy, Elsevier, vol. 300(C).
    15. Ren, He & Liu, Hongwei & Gu, Yajing & Yang, Jinhong & Lin, Yonggang & Hu, Weifei & Li, Wei, 2024. "Design and simulation of an off-grid marine current-powered seawater desalination and hydrogen production system," Renewable Energy, Elsevier, vol. 227(C).
    16. Fan Liao & Kui Yin & Yujin Ji & Wenxiang Zhu & Zhenglong Fan & Youyong Li & Jun Zhong & Mingwang Shao & Zhenhui Kang & Qi Shao, 2023. "Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Jiayi Chen & Mohammed Aliasgar & Fernando Buendia Zamudio & Tianyu Zhang & Yilin Zhao & Xu Lian & Lan Wen & Haozhou Yang & Wenping Sun & Sergey M. Kozlov & Wei Chen & Lei Wang, 2023. "Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Yu Shen & Xiao-Long Zhang & Ming-Rong Qu & Jie Ma & Sheng Zhu & Yu-Lin Min & Min-Rui Gao & Shu-Hong Yu, 2024. "Cr dopant mediates hydroxyl spillover on RuO2 for high-efficiency proton exchange membrane electrolysis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Zhang, Hong & Yuan, Tiejiang, 2022. "Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations," Applied Energy, Elsevier, vol. 324(C).
    20. Shi, Tong & Feng, Hao & Liu, Dong & Zhang, Ying & Li, Qiang, 2022. "High-performance microfluidic electrochemical reactor for efficient hydrogen evolution," Applied Energy, Elsevier, vol. 325(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.