IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v283y2021ics0306261920316603.html
   My bibliography  Save this article

Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency

Author

Listed:
  • Scheepers, Fabian
  • Stähler, Markus
  • Stähler, Andrea
  • Rauls, Edward
  • Müller, Martin
  • Carmo, Marcelo
  • Lehnert, Werner

Abstract

Most of the hydrogen produced today is made using fossil fuels, making a significant contribution to global CO2 emissions. Although polymer electrolyte membrane water-electrolyzers can produce green hydrogen by means of excess electricity generated from renewable energy sources, their operation is still not economical. According to industry experts, the necessary cost reductions can be achieved by 2030 if system efficiency can be improved. The commonly stated idea is to improve efficiency by increasing the stack temperature, which requires the development of more resistant materials. This study investigates not only the efficiency of an electrolysis cell, but of the entire electrolysis process, including gas compression of hydrogen. The results indicate that an optimal stack temperature exists for every operating point. It is shown that the optimal temperature depends solely on the electrode pressure and cell voltage and can be analytically calculated. In addition, the temperature optimization leads to significantly reduced hydrogen permeation at low current densities. In combination with the pressure optimization, the challenging safety issues of pressurized electrolysis can be eliminated for the entire load range and, at the same time, the efficiency of the overall system be maximized.

Suggested Citation

  • Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316603
    DOI: 10.1016/j.apenergy.2020.116270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920316603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toghyani, S. & Afshari, E. & Baniasadi, E. & Atyabi, S.A. & Naterer, G.F., 2018. "Thermal and electrochemical performance assessment of a high temperature PEM electrolyzer," Energy, Elsevier, vol. 152(C), pages 237-246.
    2. Witkowski, Andrzej & Rusin, Andrzej & Majkut, Mirosław & Stolecka, Katarzyna, 2017. "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects," Energy, Elsevier, vol. 141(C), pages 2508-2518.
    3. Tjarks, Geert & Gibelhaus, Andrej & Lanzerath, Franz & Müller, Martin & Bardow, André & Stolten, Detlef, 2018. "Energetically-optimal PEM electrolyzer pressure in power-to-gas plants," Applied Energy, Elsevier, vol. 218(C), pages 192-198.
    4. Fabian Scheepers & Markus Stähler & Andrea Stähler & Edward Rauls & Martin Müller & Marcelo Carmo & Werner Lehnert, 2020. "Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization," Energies, MDPI, vol. 13(3), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Zhenye & Yang, Gaoqiang & Mo, Jingke, 2024. "Development of an ultra-thin electrode for the oxygen evolution reaction in proton exchange membrane water electrolyzers," Renewable Energy, Elsevier, vol. 224(C).
    2. Yajing Gu & He Ren & Hongwei Liu & Yonggang Lin & Weifei Hu & Tian Zou & Liyuan Zhang & Luoyang Huang, 2024. "Simulation of a Tidal Current-Powered Freshwater and Energy Supply System for Sustainable Island Development," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
    3. Lin, Rui & Lu, Ying & Xu, Ji & Huo, Jiawei & Cai, Xin, 2022. "Investigation on performance of proton exchange membrane electrolyzer with different flow field structures," Applied Energy, Elsevier, vol. 326(C).
    4. Lamichhane, Pradeep & Pourali, Nima & Scott, Lauren & Tran, Nam N. & Lin, Liangliang & Gelonch, Marc Escribà & Rebrov, Evgeny V. & Hessel, Volker, 2024. "Critical review: ‘Green’ ethylene production through emerging technologies, with a focus on plasma catalysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Kumar, S. Shiva & Ni, Aleksey & Himabindu, V. & Lim, Hankwon, 2023. "Experimental and simulation of PEM water electrolyser with Pd/PN-CNPs electrodes for hydrogen evolution reaction: Performance assessment and validation," Applied Energy, Elsevier, vol. 348(C).
    6. Taehyung Koo & Rockkil Ko & Dongwoo Ha & Jaeyoung Han, 2023. "Development of Model-Based PEM Water Electrolysis HILS (Hardware-in-the-Loop Simulation) System for State Evaluation and Fault Detection," Energies, MDPI, vol. 16(8), pages 1-18, April.
    7. Li, Yuxuan & Li, Hongkun & Liu, Weiqun & Zhu, Qiao, 2024. "Optimization of membrane thickness for proton exchange membrane electrolyzer considering hydrogen production efficiency and hydrogen permeation phenomenon," Applied Energy, Elsevier, vol. 355(C).
    8. Zhang, Hong & Yuan, Tiejiang, 2022. "Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations," Applied Energy, Elsevier, vol. 324(C).
    9. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    10. Sadiq, Muhammad & Alshehhi, Reem J. & Urs, Rahul Rajeevkumar & Mayyas, Ahmad T., 2023. "Techno-economic analysis of Green-H2@Scale production," Renewable Energy, Elsevier, vol. 219(P1).
    11. Ren, He & Liu, Hongwei & Gu, Yajing & Yang, Jinhong & Lin, Yonggang & Hu, Weifei & Li, Wei, 2024. "Design and simulation of an off-grid marine current-powered seawater desalination and hydrogen production system," Renewable Energy, Elsevier, vol. 227(C).
    12. Salari, Ali & Shakibi, Hamid & Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada & Hakkaki-Fard, Ali, 2024. "Application of machine learning in evaluating and optimizing the hydrogen production performance of a solar-based electrolyzer system," Renewable Energy, Elsevier, vol. 220(C).
    13. Liu, Hongwei & Ren, He & Gu, Yajing & Lin, Yonggang & Hu, Weifei & Song, Jiajun & Yang, Jinhong & Zhu, Zengxin & Li, Wei, 2023. "Design and on-site implementation of an off-grid marine current powered hydrogen production system," Applied Energy, Elsevier, vol. 330(PB).
    14. Kang, Zhenye & Wang, Hao & Liu, Yanrong & Mo, Jingke & Wang, Min & Li, Jing & Tian, Xinlong, 2022. "Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices," Applied Energy, Elsevier, vol. 317(C).
    15. Jivan Thakare & Jahangir Masud, 2022. "Magnéli TiO 2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts," Energies, MDPI, vol. 15(12), pages 1-10, June.
    16. Jun Bu & Siyu Chang & Jinjin Li & Sanyin Yang & Wenxiu Ma & Zhenpeng Liu & Siying An & Yanan Wang & Zhen Li & Jian Zhang, 2023. "Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Scheepers & Markus Stähler & Andrea Stähler & Edward Rauls & Martin Müller & Marcelo Carmo & Werner Lehnert, 2020. "Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization," Energies, MDPI, vol. 13(3), pages 1-21, February.
    2. Bernd Emonts & Martin Müller & Michael Hehemann & Holger Janßen & Roger Keller & Markus Stähler & Andrea Stähler & Veit Hagenmeyer & Roland Dittmeyer & Peter Pfeifer & Simon Waczowicz & Michael Rubin , 2022. "A Holistic Consideration of Megawatt Electrolysis as a Key Component of Sector Coupling," Energies, MDPI, vol. 15(10), pages 1-24, May.
    3. Burin Yodwong & Damien Guilbert & Matheepot Phattanasak & Wattana Kaewmanee & Melika Hinaje & Gianpaolo Vitale, 2020. "Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    4. Xiaohua Wang & Andrew G. Star & Rajesh K. Ahluwalia, 2023. "Performance of Polymer Electrolyte Membrane Water Electrolysis Systems: Configuration, Stack Materials, Turndown and Efficiency," Energies, MDPI, vol. 16(13), pages 1-17, June.
    5. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    6. Su, Chao & Chen, Zhidong & Wu, Zexuan & Zhang, Jing & Li, Kaiyang & Hao, Junhong & Kong, Yanqiang & Zhang, Naiqiang, 2024. "Experimental and numerical study of thermal coupling on catalyst-coated membrane for proton exchange membrane water electrolyzer," Applied Energy, Elsevier, vol. 357(C).
    7. Wang, Zhiming & Wang, Xueye & Chen, Zhichao & Liao, Zhirong & Xu, Chao & Du, Xiaoze, 2021. "Energy and exergy analysis of a proton exchange membrane water electrolysis system without additional internal cooling," Renewable Energy, Elsevier, vol. 180(C), pages 1333-1343.
    8. Silvestre, Inês & Pastor, Ricardo & Neto, Rui Costa, 2023. "Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network," Energy, Elsevier, vol. 272(C).
    9. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    10. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    11. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    12. Upadhyay, Mukesh & Kim, Ayeon & Paramanantham, SalaiSargunan S. & Kim, Heehyang & Lim, Dongjun & Lee, Sunyoung & Moon, Sangbong & Lim, Hankwon, 2022. "Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition," Applied Energy, Elsevier, vol. 306(PA).
    13. Lorenzi, Guido & Lanzini, Andrea & Santarelli, Massimo & Martin, Andrew, 2017. "Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation," Energy, Elsevier, vol. 141(C), pages 1524-1537.
    14. Frank Gambou & Damien Guilbert & Michel Zasadzinski & Hugues Rafaralahy, 2022. "A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity," Energies, MDPI, vol. 15(9), pages 1-20, May.
    15. Grzegorz Szamrej & Mirosław Karczewski, 2024. "Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines," Energies, MDPI, vol. 17(7), pages 1-51, March.
    16. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    17. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    18. Wu, Horng-Wen & Ho, Tzu-Yi & Han, Yueh-Jung, 2021. "Parametric optimization of wall-mounted cuboid rows installed in interdigitated flow channel of HT-PEM fuel cells," Energy, Elsevier, vol. 216(C).
    19. Bhandari, Ramchandra & Subedi, Subodh, 2023. "Evaluation of surplus hydroelectricity potential in Nepal until 2040 and its use for hydrogen production via electrolysis," Renewable Energy, Elsevier, vol. 212(C), pages 403-414.
    20. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.