IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124017750.html
   My bibliography  Save this article

A gradient porous transport layer enabling a high-performance proton-exchange membrane electrolysis cell

Author

Listed:
  • Tang, Yinglun
  • Su, Shangchun
  • Niu, Xiaoxuan
  • Song, Zhehui
  • Li, Wenjia

Abstract

Large-scale green hydrogen production through proton-exchange membrane electrolysis cells (PEMECs) is constrained by high costs. Operating PEMECs at high current densities while minimizing overpotentials, particularly the mass transport overpotential due to intense water-oxygen two-phase flow, is crucial. The porous transport layer (PTL) plays a key role in facilitating water-oxygen two-phase flow and affecting ohmic resistance and catalyst utilization. In this study, a gradient PTL has been developed by introducing titanium mesh with tunable pores between the titanium felt and the flow field. The woven mesh structure with large pores facilitates water transport under the ribs, while the titanium felt reduces ohmic resistance and improves catalyst utilization. Experimental results demonstrate that the gradient PTL with a single layer of titanium mesh (pore size: 0.6 mm) can reduce the mass transport overpotential from 0.478 V to 0.206 V at 5 A/cm2 and maintain low ohmic and activation overpotentials compared with the conventional PTLs. Additionally, the gradient PTL with two titanium mesh layers (pore sizes: 0.6 mm and 0.28 mm) can further facilitate water transport, reducing mass transport overpotential to 0.149 V at 5 A/cm2. Numerical simulations reveal that the developed gradient PTL increases the volume fraction of liquid water and ensures uniform water distribution in the catalyst layer. The combined results indicate that the gradient PTL design is promising for enhancing mass transport performance while maintaining low ohmic resistance and high catalyst utilization, making PEMECs more viable for large-scale hydrogen production.

Suggested Citation

  • Tang, Yinglun & Su, Shangchun & Niu, Xiaoxuan & Song, Zhehui & Li, Wenjia, 2024. "A gradient porous transport layer enabling a high-performance proton-exchange membrane electrolysis cell," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017750
    DOI: 10.1016/j.renene.2024.121707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017750
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.