High-performance microfluidic electrochemical reactor for efficient hydrogen evolution
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.119887
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ju, HyungKuk & Badwal, Sukhvinder & Giddey, Sarbjit, 2018. "A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production," Applied Energy, Elsevier, vol. 231(C), pages 502-533.
- Katharina Brinkert & Matthias H. Richter & Ömer Akay & Janine Liedtke & Michael Giersig & Katherine T. Fountaine & Hans-Joachim Lewerenz, 2018. "Efficient solar hydrogen generation in microgravity environment," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
- Guo, Liejin & Chen, Yubin & Su, Jinzhan & Liu, Maochang & Liu, Ya, 2019. "Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow," Energy, Elsevier, vol. 172(C), pages 1079-1086.
- Fang Yu & Haiqing Zhou & Yufeng Huang & Jingying Sun & Fan Qin & Jiming Bao & William A. Goddard & Shuo Chen & Zhifeng Ren, 2018. "High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
- Darband, Ghasem Barati & Aliofkhazraei, Mahmood & Shanmugam, Sangaraju, 2019. "Recent advances in methods and technologies for enhancing bubble detachment during electrochemical water splitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
- Jakob Kibsgaard & Ib Chorkendorff, 2019. "Considerations for the scaling-up of water splitting catalysts," Nature Energy, Nature, vol. 4(6), pages 430-433, June.
- Kang, Zhenye & Wang, Hao & Liu, Yanrong & Mo, Jingke & Wang, Min & Li, Jing & Tian, Xinlong, 2022. "Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices," Applied Energy, Elsevier, vol. 317(C).
- Kaya, Mehmet Fatih & Demir, Nesrin & Rees, Neil V. & El-Kharouf, Ahmad, 2020. "Improving PEM water electrolyser’s performance by magnetic field application," Applied Energy, Elsevier, vol. 264(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
- Nicolas Muck & Christoph David, 2023. "Integrating Fiber Sensing for Spatially Resolved Temperature Measurement in Fuel Cells," Energies, MDPI, vol. 17(1), pages 1-17, December.
- Huang, Yuming & Zhou, Wei & Xie, Liang & Li, Jiayi & He, Yong & Chen, Shuai & Meng, Xiaoxiao & Gao, Jihui & Qin, Yukun, 2022. "Edge and defect sites in porous activated coke enable highly efficient carbon-assisted water electrolysis for energy-saving hydrogen production," Renewable Energy, Elsevier, vol. 195(C), pages 283-292.
- Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
- Jialun Gu & Lanxi Li & Youneng Xie & Bo Chen & Fubo Tian & Yanju Wang & Jing Zhong & Junda Shen & Jian Lu, 2023. "Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
- Ke Li & Heng Zhang & Xiaoyu Zheng & Chang Liu & Qianding Chen, 2022. "Hydrogen Production by Water Electrolysis with Low Power and High Efficiency Based on Pre-Magnetic Polarization," Energies, MDPI, vol. 15(5), pages 1-12, March.
- Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Zeng, Zilong & Jing, Dengwei & Guo, Liejin, 2021. "Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam," Energy, Elsevier, vol. 228(C).
- Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
- Zhang, Xu & Wang, Qing & Cui, Da & Sun, Shipeng & Wang, Zhichao & Wang, Yuqi & Xu, Faxing & Wang, Zhenye & Zhang, Jinghui, 2024. "Mechanism of supercritical water gasification of corn stover for hydrogen-rich syngas: Composition of reaction products," Energy, Elsevier, vol. 288(C).
- Khalid Almutairi & Ali Mostafaeipour & Ehsan Jahanshahi & Erfan Jooyandeh & Youcef Himri & Mehdi Jahangiri & Alibek Issakhov & Shahariar Chowdhury & Seyyed Jalaladdin Hosseini Dehshiri & Seyyed Shahab, 2021. "Ranking Locations for Hydrogen Production Using Hybrid Wind-Solar: A Case Study," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
- Huang, Zhe & Grim, Gary & Schaidle, Joshua & Tao, Ling, 2020. "Using waste CO2 to increase ethanol production from corn ethanol biorefineries: Techno-economic analysis," Applied Energy, Elsevier, vol. 280(C).
- Li, Li & Wang, Hongkang & Bei, Shaoyi & Li, Yuanjiang & Sun, Yanyun & Zheng, Keqing & Xu, Qiang, 2023. "Unsymmetrical design and operation in counter-flow microfluidic fuel cell: A prospective study," Energy, Elsevier, vol. 262(PB).
- Wenhui Zhao & Jibin Ma & Zhanyang Wang & Youting Li & Weishi Zhang, 2022. "Potential Hydrogen Market: Value-Added Services Increase Economic Efficiency for Hydrogen Energy Suppliers," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
- Qian Dang & Haiping Lin & Zhenglong Fan & Lu Ma & Qi Shao & Yujin Ji & Fangfang Zheng & Shize Geng & Shi-Ze Yang & Ningning Kong & Wenxiang Zhu & Youyong Li & Fan Liao & Xiaoqing Huang & Mingwang Shao, 2021. "Iridium metallene oxide for acidic oxygen evolution catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
- Anthony E. Hughes & Nawshad Haque & Stephen A. Northey & Sarbjit Giddey, 2021. "Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts," Resources, MDPI, vol. 10(9), pages 1-40, September.
- Zhigang Chen & Yafeng Xu & Ding Ding & Ge Song & Xingxing Gan & Hao Li & Wei Wei & Jian Chen & Zhiyun Li & Zhongmiao Gong & Xiaoming Dong & Chengfeng Zhu & Nana Yang & Jingyuan Ma & Rui Gao & Dan Luo , 2022. "Thermal migration towards constructing W-W dual-sites for boosted alkaline hydrogen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Ouyang, Tiancheng & Lu, Jie & Hu, Xiaoyi & Liu, Wenjun & Chen, Jingxian, 2022. "Multi-dimensional performance analysis and efficiency evaluation of paper-based microfluidic fuel cell," Renewable Energy, Elsevier, vol. 187(C), pages 94-108.
- Rincón, R. & Muñoz, J. & Morales-Calero, F.J. & Orejas, J. & Calzada, M.D., 2021. "Assessment of two atmospheric-pressure microwave plasma sources for H2 production from ethanol decomposition," Applied Energy, Elsevier, vol. 294(C).
More about this item
Keywords
Electrochemical water splitting; Microfluidic reactor; Mass transfer; Two-phase flow; Bubble behavior;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922011515. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.