IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipcs0360544221024828.html
   My bibliography  Save this article

Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design

Author

Listed:
  • Fan, Yongsheng
  • Lu, Dongsheng
  • Wang, Jiawei
  • Kawamoto, Haruo

Abstract

Co-pyrolysis of biomass components (cellulose, xylan and lignin) and polyethylene (PE) was performed based on simplex-lattice mixture design, and the thermal decomposition behaviors, kinetics, and bio-oil compositions were investigated. The results showed that PE could promote the reduction of residual chars for co-pyrolysis of single biomass component and PE, and the variation of blending ratios resulted in the different interactions for co-pyrolysis of two biomass components and PE. When PE ratio was low, co-pyrolysis of any two biomass components could reduce the reaction order, and only in the presence of lignin, the interaction between cellulose and PE was significant in case of reaction order. The interactions between any biomass component and PE were all significant in affecting activation energy. In terms of reducing reaction activation energy, the interaction induced by xylan was stronger than that induced by lignin, and the synergy of cellulose was the weakest. The integration of organic products between cellulose and PE and between xylan and PE was limited, but obvious integration of lignin and PE -derived products was observed. During co-pyrolysis, lignin intermediates could be quenched to stable products, attributing to the effective hydrogen transfer and interactions between PE-derived radicals and lignin intermediates.

Suggested Citation

  • Fan, Yongsheng & Lu, Dongsheng & Wang, Jiawei & Kawamoto, Haruo, 2022. "Thermochemical behaviors, kinetics and bio-oils investigation during co-pyrolysis of biomass components and polyethylene based on simplex-lattice mixture design," Energy, Elsevier, vol. 239(PC).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024828
    DOI: 10.1016/j.energy.2021.122234
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221024828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Hassan, H. & Hameed, B.H. & Lim, J.K., 2020. "Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions," Energy, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Shuaihua & Wang, Zhiwei & Chen, Gaofeng & Chen, Yan & Wu, Mengge & Zhang, Mengju & Li, Zaifeng & Yang, Shuhua & Lei, Tingzhou, 2024. "Catalytic co-pyrolysis of poplar tree and polystyrene with HZSM-5 and Fe/HZSM-5 for production of light aromatic hydrocarbons," Energy, Elsevier, vol. 298(C).
    2. Chakraborty, Sourabh & Mohanty, Kaustubha & Vinu, Ravikrishnan, 2024. "Co-pyrolysis of bamboo biomass with polypropylene coverall: Distributed activation energy modeling and pyrolysate composition studies," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changheng Li & Qing Huang & Haixiang Zhang & Qingqing Wang & Rixin Xue & Genmao Guo & Jie Hu & Tinghang Li & Junfeng Wang & Shan Hu, 2021. "Characterization of Biochars Produced by Co-Pyrolysis of Hami Melon (Cantaloupes) Straw Mixed with Polypropylene and Their Adsorption Properties of Cadmium," IJERPH, MDPI, vol. 18(21), pages 1-17, October.
    2. Abdulyekeen, Kabir Abogunde & Daud, Wan Mohd Ashri Wan & Patah, Muhamad Fazly Abdul, 2024. "Torrefaction of wood and garden wastes from municipal solid waste to enhanced solid fuel using helical screw rotation-induced fluidised bed reactor: Effect of particle size, helical screw speed and te," Energy, Elsevier, vol. 293(C).
    3. Andrzej Duda & Arkadiusz Fenicki & Patryk Molski & Elżbieta Szostak & Piotr Duda, 2020. "Design and Operation of a Modern Polish Plant for Plastic Waste Recycling through the Degradative Depolymerization Process. A Case Study," Energies, MDPI, vol. 13(24), pages 1-18, December.
    4. Xie, Teng & Yao, Zonglu & Huo, Lili & Jia, Jixiu & Zhang, Peizhen & Tian, Liwei & Zhao, Lixin, 2023. "Characteristics of biochar derived from the co-pyrolysis of corn stalk and mulch film waste," Energy, Elsevier, vol. 262(PB).
    5. Marcin Bielecki & Valentina Zubkova & Andrzej Strojwas, 2023. "An Analysis of the Influence of Low Density Polyethylene, Novolac, and Coal Tar Pitch Additives on the Decrease in Content of Impurities Emitted from Densified Pea Husks during the Process of Their Py," Energies, MDPI, vol. 16(6), pages 1-16, March.
    6. Kim, Heeyoon & Yu, Seunghan & Ra, Howon & Yoon, Sungmin & Ryu, Changkook, 2023. "Prediction of pyrolysis kinetics for torrefied biomass based on raw biomass properties and torrefaction severity," Energy, Elsevier, vol. 278(C).
    7. Adnan, Muflih A. & Hossain, Mohammad M. & Golam Kibria, Md, 2022. "Converting waste into fuel via integrated thermal and electrochemical routes: An analysis of thermodynamic approach on thermal conversion," Applied Energy, Elsevier, vol. 311(C).
    8. Jagadale, Manisha & Gangil, Sandip & Jadhav, Mahesh, 2023. "Enhancing fuel characteristics of jute sticks (Corchorus Sp.) using fixed bed torrefaction process," Renewable Energy, Elsevier, vol. 215(C).
    9. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    10. Li, Moshan & Lu, Yiyu & Hu, Erfeng & Yang, Yang & Tian, Yishui & Dai, Chongyang & Li, Chenhao, 2023. "Fast co-pyrolysis characteristics of high-alkali coal and polyethylene using infrared rapid heating," Energy, Elsevier, vol. 266(C).
    11. Jiang, Chunlong & Zhou, Wenliang & Bi, Haobo & Ni, Zhanshi & Sun, Hao & Lin, Qizhao, 2022. "Co-pyrolysis of coal slime and cattle manure by TG–FTIR–MS and artificial neural network modeling: Pyrolysis behavior, kinetics, gas emission characteristics," Energy, Elsevier, vol. 247(C).
    12. Rawat, Shweta & Wagadre, Lokesh & Kumar, Sanjay, 2024. "Multi-objective genetic algorithm approach for enhanced cumulative hydrogen and methane-rich syngas emission through co-pyrolysis of de-oiled microalgae and coal blending," Renewable Energy, Elsevier, vol. 225(C).
    13. Ma, Mingyan & Xu, Donghai & Huang, Yifei & Wang, Shuzhong & Duan, Peigao & Kapusta, Krzysztof, 2024. "Co-pyrolysis of sewage sludge with hydrogen-rich polythene: Effects on synergistic promotion and bio-oil quality," Renewable Energy, Elsevier, vol. 228(C).
    14. Shahbeik, Hossein & Rafiee, Shahin & Shafizadeh, Alireza & Jeddi, Dorsa & Jafary, Tahereh & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Characterizing sludge pyrolysis by machine learning: Towards sustainable bioenergy production from wastes," Renewable Energy, Elsevier, vol. 199(C), pages 1078-1092.
    15. Li, Qingyin & Lin, Haisheng & Fan, Huailin & Zhang, Shu & Yuan, Xiangzhou & Wang, Yi & Xiang, Jun & Hu, Song & Bkangmo Kontchouo, Félix Mérimé & Hu, Xun, 2021. "Co-pyrolysis of swine manure and pinewood sawdust: Evidence of cross-interaction of the volatiles and profound impacts on product characteristics," Renewable Energy, Elsevier, vol. 179(C), pages 1370-1384.
    16. Zhu, Wenkun & Li, Xiaohui & Sun, Rui & Yan, Yonghong & Liu, Jing & Wang, Zhuozhi & Yu, Xing, 2023. "Microstructural evolution of coal to char after pyrolysis using laser-induced breakdown spectroscopy and Raman spectroscopy," Energy, Elsevier, vol. 267(C).
    17. Chen, Bin & Li, Yanlin & Yuan, Mengxue & Shen, Jun & Wang, Sha & Tong, Jianhui & Guo, Yun, 2022. "Study of the Co-pyrolysis characteristics of oil shale with wheat straw based on the hierarchical collection," Energy, Elsevier, vol. 239(PB).
    18. Wang, Yuzhuo & Wu, Jun Jie, 2023. "Thermochemical conversion of biomass: Potential future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    19. Varma, Anil Kumar & Lal, Navneeta & Rathore, Ashwani Kumar & Katiyar, Rajesh & Thakur, Lokendra Singh & Shankar, Ravi & Mondal, Prasenjit, 2021. "Thermal, kinetic and thermodynamic study for co-pyrolysis of pine needles and styrofoam using thermogravimetric analysis," Energy, Elsevier, vol. 218(C).
    20. Ikram Uddin & Muhammad Sohail & Muhammad Ijaz Hussain & Norah Alhokbany & Juan Amaro-Gahete & Rafael Estévez, 2023. "Probing the Pyrolysis Process of Rice Straw over a “Dual-Catalyst Bed” for the Production of Fuel Gases and Value-Added Chemicals," Sustainability, MDPI, vol. 15(14), pages 1-12, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pc:s0360544221024828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.