IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i9p4531-4550d28458.html
   My bibliography  Save this article

Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid

Author

Listed:
  • Zhijun Zhang

    (MOE Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Harbin 150040, China
    Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, USA)

  • Shujuan Sui

    (MOE Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Harbin 150040, China)

  • Fengqiang Wang

    (MOE Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Harbin 150040, China)

  • Qingwen Wang

    (MOE Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Harbin 150040, China)

  • Charles U. Pittman

    (MOE Key Laboratory of Bio-based Material Science and Technology, Northeast Forestry University, Harbin 150040, China)

Abstract

Crude bio-oil from pine chip fast pyrolysis was upgraded with olefins (1-octene, cyclohexene, 1,7-octadiene, and 2,4,4-trimethylpentene) plus 1-butanol ( iso -butanol, t -butanol and ethanol) at 120 °C using a silica sulfuric acid (SSA) catalyst that possesses a good catalytic activity and stability. Gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance ( 1 H-NMR) analysis showed that upgrading sharply increased ester content and decreased the amounts of levoglucosan, phenols, polyhydric alcohols and carboxylic acids. Upgrading lowered acidity (pH value rose from 2.5 to >3.5), removed the unpleasant odor and increased hydrocarbon solubility. Water content dramatically decreased from 37.2% to about 7.0% and the heating value increased from 12.6 MJ·kg −1 to about 31.9 MJ·kg −1 . This work has proved that bio-oil upgrading with a primary olefin plus 1-butanol is a feasible route where all the original heating value of the bio-oil plus the added olefin and alcohol are present in the resulting fuel.

Suggested Citation

  • Zhijun Zhang & Shujuan Sui & Fengqiang Wang & Qingwen Wang & Charles U. Pittman, 2013. "Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid," Energies, MDPI, vol. 6(9), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:9:p:4531-4550:d:28458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/9/4531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/9/4531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qiang Lu & Zhi-Fei Zhang & Chang-Qing Dong & Xi-Feng Zhu, 2010. "Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study," Energies, MDPI, vol. 3(11), pages 1-16, November.
    2. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    3. Zhijun Zhang & Charles U. Pittman & Shujuan Sui & Jianping Sun & Qingwen Wang, 2013. "Catalytic Upgrading of Bio-Oil by Reacting with Olefins and Alcohols over Solid Acids: Reaction Paths via Model Compound Studies," Energies, MDPI, vol. 6(3), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Merckel, Ryan D. & Heydenrych, Mike D. & Sithole, Bruce B., 2021. "Pyrolysis oil composition and catalytic activity estimated by cumulative mass analysis using Py-GC/MS EGA-MS," Energy, Elsevier, vol. 219(C).
    2. Arteaga-Pérez, Luis E. & Gómez Cápiro, Oscar & Romero, Romina & Delgado, Aaron & Olivera, Patricia & Ronsse, Frederik & Jiménez, Romel, 2017. "In situ catalytic fast pyrolysis of crude and torrefied Eucalyptus globulus using carbon aerogel-supported catalysts," Energy, Elsevier, vol. 128(C), pages 701-712.
    3. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    4. Cheng Li & Xiaochen Yue & Jun Yang & Yafeng Yang & Haiping Gu & Wanxi Peng, 2019. "Catalytic Fast Pyrolysis of Forestry Wood Waste for Bio-Energy Recovery Using Nano-Catalysts," Energies, MDPI, vol. 12(20), pages 1-12, October.
    5. Danfeng Zhang & Xin Wang & Liang Zhao & Huaqing Xie & Chen Guo & Feizhou Qian & Hui Dong & Yun Hu, 2023. "Numerical Investigation on Heat Transfer and Flow Resistance Characteristics of Superheater in Hydrocracking Heat Recovery Steam Generator," Energies, MDPI, vol. 16(17), pages 1-15, August.
    6. Struhs, Ethan & Mirkouei, Amin & You, Yaqi & Mohajeri, Amir, 2020. "Techno-economic and environmental assessments for nutrient-rich biochar production from cattle manure: A case study in Idaho, USA," Applied Energy, Elsevier, vol. 279(C).
    7. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.
    8. Yichen Liu & James J. Leahy & Jacek Grams & Witold Kwapinski, 2019. "Hydro-Pyrolysis and Catalytic Upgrading of Biomass and Its Hydroxy Residue Fast Pyrolysis Vapors," Energies, MDPI, vol. 12(18), pages 1-18, September.
    9. Wang, Lijun & Agyemang, Samuel A. & Amini, Hossein & Shahbazi, Abolghasem, 2015. "Mathematical modeling of production and biorefinery of energy crops," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 530-544.
    10. Su, Yu & Zhang, Yanfang & Qi, Jinxia & Xue, Tiantian & Xu, Minggao & Yang, Jiuzhong & Pan, Yang & Lin, Zhenkun, 2020. "Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles," Renewable Energy, Elsevier, vol. 152(C), pages 94-101.
    11. Yang, Zixu & Kumar, Ajay & Huhnke, Raymond L., 2015. "Review of recent developments to improve storage and transportation stability of bio-oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 859-870.
    12. Shanmugam Palanisamy & Börje Sten Gevert & Pranav Sankaran & Kannan Kandasamy, 2019. "Produce Low Aromatic Contents with Enhanced Cold Properties of Hydrotreated Renewable Diesel Using Pt/Alumina-Beta-Zeolite: Reaction Path Studied via Monoaromatic Model Compound," Energies, MDPI, vol. 12(15), pages 1-15, July.
    13. Lin, Junhao & Sun, Shichang & Cui, Chongwei & Ma, Rui & Fang, Lin & Zhang, Peixin & Quan, Zonggang & Song, Xin & Yan, Jianglong & Luo, Juan, 2019. "Hydrogen-rich bio-gas generation and optimization in relation to heavy metals immobilization during Pd-catalyzed supercritical water gasification of sludge," Energy, Elsevier, vol. 189(C).
    14. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    15. Javier Fermoso & Patricia Pizarro & Juan M. Coronado & David P. Serrano, 2017. "Advanced biofuels production by upgrading of pyrolysis bio‐oil," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(4), July.
    16. Tanneru, Sathish K. & Steele, Philip H., 2015. "Production of liquid hydrocarbons from pretreated bio-oil via catalytic deoxygenation with syngas," Renewable Energy, Elsevier, vol. 80(C), pages 251-258.
    17. Dimitriadis, Athanasios & Chrysikou, Loukia P. & Meletidis, George & Terzis, George & Auersvald, Miloš & Kubička, David & Bezergianni, Stella, 2021. "Bio-based refinery intermediate production via hydrodeoxygenation of fast pyrolysis bio-oil," Renewable Energy, Elsevier, vol. 168(C), pages 593-605.
    18. Wang, Jicong & Bi, Peiyan & Zhang, Yajing & Xue, He & Jiang, Peiwen & Wu, Xiaoping & Liu, Junxu & Wang, Tiejun & Li, Quanxin, 2015. "Preparation of jet fuel range hydrocarbons by catalytic transformation of bio-oil derived from fast pyrolysis of straw stalk," Energy, Elsevier, vol. 86(C), pages 488-499.
    19. Caio Campos Ferreira & Lucas Pinto Bernar & Augusto Fernando de Freitas Costa & Haroldo Jorge da Silva Ribeiro & Marcelo Costa Santos & Nathalia Lobato Moraes & Yasmin Santos Costa & Ana Cláudia Fonse, 2022. "Improving Fuel Properties and Hydrocarbon Content from Residual Fat Pyrolysis Vapors over Activated Red Mud Pellets in Two-Stage Reactor: Optimization of Reaction Time and Catalyst Content," Energies, MDPI, vol. 15(15), pages 1-33, August.
    20. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:9:p:4531-4550:d:28458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.