IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017998.html
   My bibliography  Save this article

Production of biofuel from AD digestate waste and their combustion characteristics in a low-speed diesel engine

Author

Listed:
  • Hossain, Abul Kalam
  • Sharma, Vikas
  • Serrano, Clara
  • Krishnasamy, Anand
  • Ganesh, Duraisamy

Abstract

Anaerobic digestion biogas plants generate large amounts of digestate that cannot always be valorised as fertilizer. This study proposes an alternative use through pyrolysis of the digestate for the production of liquid fuels for compression ignition engines. The digestate pyrolysis oil (DPO) and two types of biodiesel were produced and mixed with different alcohols. A total of five blends of DPO, biodiesel and alcohol were prepared and characterized, showing that their acidity and viscosity were higher than for pure diesel, and their heating value was lower. Blends containing 60 % biodiesel, 20 % DPO, and 20 % butanol were then tested in an engine, showing that the maximum in-cylinder pressure and heat release rate were 4.6 % and 3 % lower, respectively, compared to diesel, and the engine thermal efficiency at full load was 6–8% lower. The nitric oxide and smoke emissions were 7 % and 40 % lower, respectively, but the carbon dioxide emissions were 7–10 % higher than with diesel. The blends showed retarded start of combustion by 1.5° crank angle, which delays the ignition by about 6.4 %. This study concludes that blends can be used as a fuel for agriculture and marine diesel engines, although their viscosity should be reduced by improving the pyrolysis conditions.

Suggested Citation

  • Hossain, Abul Kalam & Sharma, Vikas & Serrano, Clara & Krishnasamy, Anand & Ganesh, Duraisamy, 2024. "Production of biofuel from AD digestate waste and their combustion characteristics in a low-speed diesel engine," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017998
    DOI: 10.1016/j.renene.2023.119884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szwaja, Magdalena & Chwist, Mariusz & Szymanek, Arkadiusz & Szwaja, Stanisław, 2022. "Pyrolysis oil blended n-butanol as a fuel for power generation by an internal combustion engine," Energy, Elsevier, vol. 261(PB).
    2. Vikas Sharma & Abul Kalam Hossain & Ganesh Duraisamy & Murugan Vijay, 2021. "Transesterification of Pyrolysed Castor Seed Oil in the Presence of CaCu(OCH 3 ) 2 Catalyst," Energies, MDPI, vol. 14(19), pages 1-14, September.
    3. Monlau, F. & Francavilla, M. & Sambusiti, C. & Antoniou, N. & Solhy, A. & Libutti, A. & Zabaniotou, A. & Barakat, A. & Monteleone, M., 2016. "Toward a functional integration of anaerobic digestion and pyrolysis for a sustainable resource management. Comparison between solid-digestate and its derived pyrochar as soil amendment," Applied Energy, Elsevier, vol. 169(C), pages 652-662.
    4. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    5. Killol, Abhijeet & Reddy, Niklesh & Paruvada, Santosh & Murugan, S., 2019. "Experimental studies of a diesel engine run on biodiesel n-butanol blends," Renewable Energy, Elsevier, vol. 135(C), pages 687-700.
    6. Vikas Sharma & Abul K. Hossain & Ganesh Duraisamy, 2021. "Experimental Investigation of Neat Biodiesels’ Saturation Level on Combustion and Emission Characteristics in a CI Engine," Energies, MDPI, vol. 14(16), pages 1-18, August.
    7. Thakkar, Kartikkumar & Kachhwaha, Surendra Singh & Kodgire, Pravin & Srinivasan, Seshasai, 2021. "Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Campos-Fernández, Javier & Arnal, Juan M. & Gómez, Jose & Dorado, M. Pilar, 2012. "A comparison of performance of higher alcohols/diesel fuel blends in a diesel engine," Applied Energy, Elsevier, vol. 95(C), pages 267-275.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    2. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    3. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    4. Hammad Ahmad Jan & Igor Šurina & Akhtar Zaman & Ahmed S. Al-Fatesh & Fazli Rahim & Raja L. Al-Otaibi, 2022. "Synthesis of Biodiesel from Ricinus communis L. Seed Oil, a Promising Non-Edible Feedstock Using Calcium Oxide Nanoparticles as a Catalyst," Energies, MDPI, vol. 15(17), pages 1-15, September.
    5. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    6. Ji, Li-Qun & Zhang, Chuang & Fang, Jing-Qi, 2017. "Economic analysis of converting of waste agricultural biomass into liquid fuel: A case study on a biofuel plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 224-229.
    7. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    8. Juan Carlos Lozano Medina & Sebastian Perez-Baez & Federico Leon-Zerpa & Carlos A. Mendieta-Pino, 2024. "Alternatives for the Optimization and Reduction in the Carbon Footprint in Island Electricity Systems (IESs)," Sustainability, MDPI, vol. 16(3), pages 1-17, January.
    9. Muthukumar, K. & Kasiraman, G., 2024. "Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study," Energy, Elsevier, vol. 289(C).
    10. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
    12. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    13. Zhou, Hewen & Yang, Qing & Gul, Eid & Shi, Mengmeng & Li, Jiashuo & Yang, Minjiao & Yang, Haiping & Chen, Bin & Zhao, Haibo & Yan, Yunjun & Erdoğan, Güneş & Bartocci, Pietro & Fantozzi, Francesco, 2021. "Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis," Renewable Energy, Elsevier, vol. 176(C), pages 565-578.
    14. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    15. Singh, Rawel & Krishna, Bhavya B. & Mishra, Garima & Kumar, Jitendra & Bhaskar, Thallada, 2016. "Strategies for selection of thermo-chemical processes for the valorisation of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 226-237.
    16. Li, Bowen & Li, Yanfei & Liu, Haoye & Liu, Fang & Wang, Zhi & Wang, Jianxin, 2017. "Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends," Applied Energy, Elsevier, vol. 206(C), pages 425-431.
    17. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Kumar, Himansh & Sarma, A.K. & Kumar, Pramod, 2020. "A comprehensive review on preparation, characterization, and combustion characteristics of microemulsion based hybrid biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    19. Zhang, Zhi-Hui & Balasubramanian, Rajasekhar, 2016. "Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends," Applied Energy, Elsevier, vol. 163(C), pages 71-80.
    20. Rajesh Kumar, B. & Saravanan, S. & Rana, D. & Nagendran, A., 2016. "Use of some advanced biofuels for overcoming smoke/NOx trade-off in a light-duty DI diesel engine," Renewable Energy, Elsevier, vol. 96(PA), pages 687-699.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.