IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics096014812301251x.html
   My bibliography  Save this article

Metal loading on CaO/Al2O3 pellet catalyst as a booster for transesterification in biodiesel production

Author

Listed:
  • Chanthon, Narita
  • Munbupphachart, Nattawadee
  • Ngaosuwan, Kanokwan
  • Kiatkittipong, Worapon
  • Wongsawaeng, Doonyapong
  • Mens, Weerinda
  • Rokhum, Samuel Lalthazuala
  • Assabumrungrat, Suttichai

Abstract

The enhancement in the catalytic activity by using metal loading on CaO/Al2O3 pellet catalysts (M-CaO/Al2O3) for transesterification of palm oil with a 12:1 methanol-to-oil molar ratio and 10 wt% of catalyst loading and stirring speed of 600 rpm at a reaction temperature of 65 °C was revealed. FAME yields at 6 h reaction time using K-CaO/Al2O3, Sr-CaO/Al2O3, Fe-CaO/Al2O3, Li-CaO/Al2O3, and CaO/Al2O3 pellet catalysts were 88.8, 85.2, 67.0, 84.0, and 78.7%, respectively. M-CaO/Al2O3 pellet catalysts can promote the initial rate, initial TOF, and FAME yield since the metal loading on the CaO/Al2O3 pellet catalyst changes the environment of surface oxygen to increase lattice oxygen (O2−) as Lewis basic site. This work highlighted the role of O2− in the basicity and initial TOF with a linear correlation for metal oxide pellet catalyst. Although the K-CaO/Al2O3 pellet catalyst gave the highest FAME yield, the highest leaching of the active species was observed. Therefore, the high catalytic activity and stability of the Sr-CaO/Al2O3 pellet catalyst confirmed that there is more potential to drive toward continuous biodiesel production in the industry.

Suggested Citation

  • Chanthon, Narita & Munbupphachart, Nattawadee & Ngaosuwan, Kanokwan & Kiatkittipong, Worapon & Wongsawaeng, Doonyapong & Mens, Weerinda & Rokhum, Samuel Lalthazuala & Assabumrungrat, Suttichai, 2023. "Metal loading on CaO/Al2O3 pellet catalyst as a booster for transesterification in biodiesel production," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s096014812301251x
    DOI: 10.1016/j.renene.2023.119336
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301251X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sulaiman, Nur Fatin & Hashim, Ainul Nadia Nor & Toemen, Susilawati & Rosid, Salmiah Jamal Mat & Mokhtar, Wan Nur Aini Wan & Nadarajan, Renugambaal & Bakar, Wan Azelee Wan Abu, 2020. "Biodiesel production from refined used cooking oil using co-metal oxide catalyzed transesterification," Renewable Energy, Elsevier, vol. 153(C), pages 1-11.
    2. Liu, Xiaoyan & Zhu, Fenfen & Zhang, Rongyan & Zhao, Luyao & Qi, Juanjuan, 2021. "Recent progress on biodiesel production from municipal sewage sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Xia, Shaige & Li, Jian & Chen, Guanyi & Tao, Junyu & Li, Wanqing & Zhu, Guangbin, 2022. "Magnetic reusable acid-base bifunctional Co doped Fe2O3–CaO nanocatalysts for biodiesel production from soybean oil and waste frying oil," Renewable Energy, Elsevier, vol. 189(C), pages 421-434.
    4. Zhang, Yujiao & Niu, Shengli & Han, Kuihua & Li, Yingjie & Lu, Chunmei, 2021. "Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel," Renewable Energy, Elsevier, vol. 168(C), pages 981-990.
    5. AlSharifi, Mariam & Znad, Hussein, 2019. "Development of a lithium based chicken bone (Li-Cb) composite as an efficient catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 136(C), pages 856-864.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lani, Nurul Saadiah & Ngadi, Norzita & Haron, Saharudin & Mohammed Inuwa, Ibrahim & Anako Opotu, Lawal, 2024. "The catalytic effect of calcium oxide and magnetite loading on magnetically supported calcium oxide-zeolite catalyst for biodiesel production from used cooking oil," Renewable Energy, Elsevier, vol. 222(C).
    2. Daabo, Ahmed M. & Saeed, Liqaa I. & Altamer, Marwa H. & Fadhil, Abdelrahman B. & Badawy, Tawfik, 2022. "The production of bio-based fuels and carbon catalysts from chicken waste," Renewable Energy, Elsevier, vol. 201(P1), pages 21-34.
    3. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.
    4. Long, Feng & Liu, Weiguo & Jiang, Xia & Zhai, Qiaolong & Cao, Xincheng & Jiang, Jianchun & Xu, Junming, 2021. "State-of-the-art technologies for biofuel production from triglycerides: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Zhu, Jishen & Jiang, Weiqiang & Yuan, Zong & Lu, Jie & Ding, Jincheng, 2024. "Esterification of tall oil fatty acid catalyzed by Zr4+-CER in fixed bed membrane reactor," Renewable Energy, Elsevier, vol. 221(C).
    6. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    7. Sulaiman, Nur Fatin & Lee, Siew Ling & Toemen, Susilawati & Bakar, Wan Azelee Wan Abu, 2020. "Physicochemical characteristics of Cu/Zn/γ-Al2O3 catalyst and its mechanistic study in transesterification for biodiesel production," Renewable Energy, Elsevier, vol. 156(C), pages 142-157.
    8. Ezzati, Rohollah & Ranjbar, Shahram & Soltanabadi, Azim, 2021. "Kinetics models of transesterification reaction for biodiesel production: A theoretical analysis," Renewable Energy, Elsevier, vol. 168(C), pages 280-296.
    9. Hongshen Li & Hongrui Liu & Yufang Li & Jilin Nan & Chen Shi & Shizhong Li, 2021. "Combined Vapor Permeation and Continuous Solid-State Distillation for Energy-Efficient Bioethanol Production," Energies, MDPI, vol. 14(8), pages 1-15, April.
    10. Abdullah, Rose Fadzilah & Rashid, Umer & Ibrahim, Mohd Lokman & Hazmi, Balkis & Alharthi, Fahad A. & Nehdi, Imededdine Arbi, 2021. "Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Li, Ying & Niu, Shengli & Hao, Yanan & Zhou, Wenbo & Wang, Jun & Liu, Jiangwei, 2022. "Role of oxygen vacancy on activity of Fe-doped SrTiO3 perovskite bifunctional catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 199(C), pages 1258-1271.
    12. Li, Hui & Wang, Yongbo & Han, Zhihao & Wang, Tianyu & Wang, Yunpu & Liu, Chenhui & Guo, Min & Li, Guoning & Lu, Wanpeng & Yu, Mingzhi & Ma, Xiaoling, 2022. "Nanosheet like CaO/C derived from Ca-BTC for biodiesel production assisted with microwave," Applied Energy, Elsevier, vol. 326(C).
    13. Hoora Mazaheri & Hwai Chyuan Ong & Zeynab Amini & Haji Hassan Masjuki & M. Mofijur & Chia Hung Su & Irfan Anjum Badruddin & T.M. Yunus Khan, 2021. "An Overview of Biodiesel Production via Calcium Oxide Based Catalysts: Current State and Perspective," Energies, MDPI, vol. 14(13), pages 1-23, July.
    14. Al-Saadi, Ali & Mathan, Bobby & He, Yinghe, 2020. "Esterification and transesterification over SrO–ZnO/Al2O3 as a novel bifunctional catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 158(C), pages 388-399.
    15. Juan Jesús De la Torre Bayo & Jaime Martín Pascual & Juan Carlos Torres Rojo & Montserrat Zamorano Toro, 2022. "Waste to Energy from Municipal Wastewater Treatment Plants: A Science Mapping," Sustainability, MDPI, vol. 14(24), pages 1-25, December.
    16. Natalia Kujawska & Szymon Talbierz & Marcin Dębowski & Joanna Kazimierowicz & Marcin Zieliński, 2021. "Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon," Energies, MDPI, vol. 14(10), pages 1-16, May.
    17. Cai, Dongren & Zhan, Guowu & Xiao, Jingran & Zhou, Shu-Feng & Qiu, Ting, 2021. "Design and synthesis of novel amphipathic ionic liquids for biodiesel production from soapberry oil," Renewable Energy, Elsevier, vol. 168(C), pages 779-790.
    18. Khatibi, Maryam & Khorasheh, Farhad & Larimi, Afsanehsadat, 2021. "Biodiesel production via transesterification of canola oil in the presence of Na–K doped CaO derived from calcined eggshell," Renewable Energy, Elsevier, vol. 163(C), pages 1626-1636.
    19. Masera, Kemal & Hossain, Abul Kalam, 2023. "Advancement of biodiesel fuel quality and NOx emission control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    20. A. Alcantara & F. J. Lopez-Gimenez & M. P. Dorado, 2020. "Universal Kinetic Model to Simulate Two-Step Biodiesel Production from Vegetable Oil," Energies, MDPI, vol. 13(11), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s096014812301251x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.