IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp18-23.html
   My bibliography  Save this article

Biowaste utilization in the process of co-gasification with bituminous coal and lignite

Author

Listed:
  • Howaniec, Natalia
  • Smoliński, Adam

Abstract

Biowaste utilization in co-gasification with bituminous coal and lignite gives the benefits of stable supplies of a primary energy source – coal and utilization of a zero-emission, waste material (i.e. agriculture waste, sewage sludge, etc.) with higher process efficiency and lower negative environmental impact than biomass or coal gasification, respectively. The main focus of the study presented is co-gasification of bituminous coal or lignite with biowaste to hydrogen-rich gas. The experiments were performed in the laboratory scale fixed-bed reactor installation at 700 and 900 °C. The Hierarchical Clustering Analysis complemented with a color map of studied data were applied in the selection of the optimal operating parameters for biowaste utilization in the co-gasification process based on the experimental data of gasification/co-gasification process as well as physical and chemical properties of fuels tested. The experimental results showed that the carbon conversion rate in co-gasification increased with increasing biomass content in a fuel. The total gas volume and hydrogen volume in co-gasification were higher than the values expected based on the results of the gasification process of the fuels analyzed.

Suggested Citation

  • Howaniec, Natalia & Smoliński, Adam, 2017. "Biowaste utilization in the process of co-gasification with bituminous coal and lignite," Energy, Elsevier, vol. 118(C), pages 18-23.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:18-23
    DOI: 10.1016/j.energy.2016.12.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216318266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kirkels, Arjan F. & Verbong, Geert P.J., 2011. "Biomass gasification: Still promising? A 30-year global overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 471-481, January.
    2. Howaniec, Natalia & Smoliński, Adam, 2014. "Influence of fuel blend ash components on steam co-gasification of coal and biomass – Chemometric study," Energy, Elsevier, vol. 78(C), pages 814-825.
    3. Ahmad, Anis Atikah & Zawawi, Norfadhila Abdullah & Kasim, Farizul Hafiz & Inayat, Abrar & Khasri, Azduwin, 2016. "Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1333-1347.
    4. Howaniec, Natalia & Smoliński, Adam & Cempa-Balewicz, Magdalena, 2015. "Experimental study on application of high temperature reactor excess heat in the process of coal and biomass co-gasification to hydrogen-rich gas," Energy, Elsevier, vol. 84(C), pages 455-461.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awasthi, Mukesh Kumar & Sarsaiya, Surendra & Wainaina, Steven & Rajendran, Karthik & Awasthi, Sanjeev Kumar & Liu, Tao & Duan, Yumin & Jain, Archana & Sindhu, Raveendran & Binod, Parameswaran & Pandey, 2021. "Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Iwaszenko, Sebastian & Howaniec, Natalia & Smoliński, Adam, 2019. "Determination of random pore model parameters for underground coal gasification simulation," Energy, Elsevier, vol. 166(C), pages 972-978.
    3. Janusz Zdeb & Natalia Howaniec & Adam Smoliński, 2019. "Utilization of Carbon Dioxide in Coal Gasification—An Experimental Study," Energies, MDPI, vol. 12(1), pages 1-12, January.
    4. Smoliński, Adam & Howaniec, Natalia, 2023. "Experimental investigation and chemometric analysis of gasification and co-gasification of olive pomace and Sida Hermaphrodita blends with sewage sludge to hydrogen-rich gas," Energy, Elsevier, vol. 284(C).
    5. Smoliński, Adam & Wojtacha-Rychter, Karolina & Król, Magdalena & Magdziarczyk, Małgorzata & Polański, Jarosław & Howaniec, Natalia, 2022. "Co-gasification of refuse-derived fuels and bituminous coal with oxygen/steam blend to hydrogen rich gas," Energy, Elsevier, vol. 254(PA).
    6. Wojtacha-Rychter, Karolina & Howaniec, Natalia & Smoliński, Adam, 2024. "Investigation of co-gasification characteristics of coal with wood biomass and rubber seals in a fixed bed gasifier," Renewable Energy, Elsevier, vol. 220(C).
    7. Smoliński, Adam & Howaniec, Natalia & Gąsior, Rafał & Polański, Jarosław & Magdziarczyk, Małgorzata, 2021. "Hydrogen rich gas production through co-gasification of low rank coal, flotation concentrates and municipal refuse derived fuel," Energy, Elsevier, vol. 235(C).
    8. Anatoliy Golovchenko & Roman Dychkovskyi & Yuliya Pazynich & Cáceres Cabana Edgar & Natalia Howaniec & Bartłomiej Jura & Adam Smolinski, 2020. "Some Aspects of the Control for the Radial Distribution of Burden Material and Gas Flow in the Blast Furnace," Energies, MDPI, vol. 13(4), pages 1-11, February.
    9. Li, Xian & Shen, Ye & Kan, Xiang & Hardiman, Timothy Kurnia & Dai, Yanjun & Wang, Chi-Hwa, 2018. "Thermodynamic assessment of a solar/autothermal hybrid gasification CCHP system with an indirectly radiative reactor," Energy, Elsevier, vol. 142(C), pages 201-214.
    10. Adam Smoliński & Andrzej Bąk, 2022. "Clean Coal Technologies as an Effective Way in Global Carbon Dioxide Mitigation," Energies, MDPI, vol. 15(16), pages 1-4, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patel, Vimal R. & Patel, Darshil & Varia, Nandan S. & Patel, Rajesh N., 2017. "Co-gasification of lignite and waste wood in a pilot-scale (10 kWe) downdraft gasifier," Energy, Elsevier, vol. 119(C), pages 834-844.
    2. Sérgio Ferreira & Eliseu Monteiro & Paulo Brito & Cândida Vilarinho, 2019. "A Holistic Review on Biomass Gasification Modified Equilibrium Models," Energies, MDPI, vol. 12(1), pages 1-31, January.
    3. Adam Smoliński & Natalia Howaniec & Andrzej Bąk, 2018. "Utilization of Energy Crops and Sewage Sludge in the Process of Co-Gasification for Sustainable Hydrogen Production," Energies, MDPI, vol. 11(4), pages 1-8, March.
    4. Ku, Xiaoke & Wang, Jin & Jin, Hanhui & Lin, Jianzhong, 2019. "Effects of operating conditions and reactor structure on biomass entrained-flow gasification," Renewable Energy, Elsevier, vol. 139(C), pages 781-795.
    5. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    6. Zeng, Jimin & Xiao, Rui & Yuan, Jun, 2021. "High-quality syngas production from biomass driven by chemical looping on a PY-GA coupled reactor," Energy, Elsevier, vol. 214(C).
    7. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    8. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    9. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    10. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    11. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    12. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    13. Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
    14. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    15. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    16. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    17. Abdulrahman A. Al-Rabiah & Jiyad N. Al-Dawsari & Abdelhamid M. Ajbar & Rayan K. Al Darwish & Omar Y. Abdelaziz, 2022. "Development of a Biomass Gasification Process for the Coproduction of Methanol and Power from Red Sea Microalgae," Energies, MDPI, vol. 15(21), pages 1-14, October.
    18. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
    19. Chadwick, Dara T. & McDonnell, Kevin P. & Brennan, Liam P. & Fagan, Colette C. & Everard, Colm D., 2014. "Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 672-681.
    20. Garcia, Dorival Pinheiro & Caraschi, José Cláudio & Ventorim, Gustavo & Vieira, Fábio Henrique Antunes & de Paula Protásio, Thiago, 2019. "Assessment of plant biomass for pellet production using multivariate statistics (PCA and HCA)," Renewable Energy, Elsevier, vol. 139(C), pages 796-805.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:18-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.