IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v206y2023icp597-608.html
   My bibliography  Save this article

Green biodiesel production from Jatropha curcas oil using a carbon-based solid acid catalyst: A process optimization study

Author

Listed:
  • Ruatpuia, Joseph V.L.
  • Changmai, Bishwajit
  • Pathak, Ayush
  • Alghamdi, Lana A.
  • Kress, Thomas
  • Halder, Gopinath
  • Wheatley, Andrew E.H.
  • Rokhum, Samuel Lalthazuala

Abstract

Biodiesel production from low cost, inedible oil represents an increasingly important target for reasons of both sustainability and cost. In this work, we comprehensively verify the batch reproducibility of a sulfonic acid functionalized carbonaceous material (SAFACAM) as catalyst for biodiesel production from inedible feedstock Jatropha curcas oil (JCO). The current catalyst benefits the environment through its atom-efficient, one-pot preparation from an abundant natural biomass derivative (glucose) and has the potential to reduce the overall biodiesel production cost by converting inexpensive raw materials. In this context, JCO has emerged as a crop of interest to the energy sector, potentially providing a reliable and renewable energy source for many countries. Through a central composite design (CCD) approach using response surface methodology (RSM), a 98.7 ± 0.6% conversion of biodiesel is achieved (methanol-to-oil molar ratio 20:1, reaction time 50 min, reaction temperature 120 °C and catalyst loading 9 wt % (with respect to oil)). The chemically satisfactory composition of the biodiesel product has been verified, the reusability of catalyst has been tested, and a significant enhancement in performance when using microwave heating demonstrated. An 83.0 ± 0.8% conversion of JCO is reported in the fifth cycle of reuse.

Suggested Citation

  • Ruatpuia, Joseph V.L. & Changmai, Bishwajit & Pathak, Ayush & Alghamdi, Lana A. & Kress, Thomas & Halder, Gopinath & Wheatley, Andrew E.H. & Rokhum, Samuel Lalthazuala, 2023. "Green biodiesel production from Jatropha curcas oil using a carbon-based solid acid catalyst: A process optimization study," Renewable Energy, Elsevier, vol. 206(C), pages 597-608.
  • Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:597-608
    DOI: 10.1016/j.renene.2023.02.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123001854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.02.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, H.V. & Juan, J.C. & Taufiq-Yap, Y.H., 2015. "Preparation and application of binary acid–base CaO–La2O3 catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 74(C), pages 124-132.
    2. Chauhan, Bhupendra Singh & Kumar, Naveen & Cho, Haeng Muk, 2012. "A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends," Energy, Elsevier, vol. 37(1), pages 616-622.
    3. Zhang, Bingxin & Gao, Ming & Geng, Jiayu & Cheng, Yuwei & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Liu, Shu & Cheung, Siu Ming, 2021. "Catalytic performance and deactivation mechanism of a one-step sulfonated carbon-based solid-acid catalyst in an esterification reaction," Renewable Energy, Elsevier, vol. 164(C), pages 824-832.
    4. Aghel, Babak & Gouran, Ashkan & Nasirmanesh, Farzad, 2022. "Transesterification of waste cooking oil using clinoptilolite/ industrial phosphoric waste as green and environmental catalysts," Energy, Elsevier, vol. 244(PB).
    5. Jain, Siddharth & Sharma, M.P., 2010. "Prospects of biodiesel from Jatropha in India: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 763-771, February.
    6. Aghel, Babak & Gouran, Ashkan & Parandi, Ehsan & Jumeh, Binta Hadi & Nodeh, Hamid Rashidi, 2022. "Production of biodiesel from high acidity waste cooking oil using nano GO@MgO catalyst in a microreactor," Renewable Energy, Elsevier, vol. 200(C), pages 294-302.
    7. Rokhum, Samuel Lalthazuala & Changmai, Bishwajit & Kress, Thomas & Wheatley, Andrew E.H., 2022. "A one-pot route to tunable sugar-derived sulfonated carbon catalysts for sustainable production of biodiesel by fatty acid esterification," Renewable Energy, Elsevier, vol. 184(C), pages 908-919.
    8. Yahya, Salah I. & Aghel, Babak, 2021. "Estimation of kinematic viscosity of biodiesel-diesel blends: Comparison among accuracy of intelligent and empirical paradigms," Renewable Energy, Elsevier, vol. 177(C), pages 318-326.
    9. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.
    10. Achten, Wouter M.J. & Almeida, Joana & Fobelets, Vincent & Bolle, Evelien & Mathijs, Erik & Singh, Virendra P. & Tewari, Dina N. & Verchot, Louis V. & Muys, Bart, 2010. "Life cycle assessment of Jatropha biodiesel as transportation fuel in rural India," Applied Energy, Elsevier, vol. 87(12), pages 3652-3660, December.
    11. Laskar, Ikbal Bahar & Changmai, Bishwajit & Gupta, Rajat & Shi, Da & Jenkinson, Kellie J. & Wheatley, Andrew E.H. & Rokhum, Lalthazuala, 2021. "A mesoporous polysulfonic acid-formaldehyde polymeric catalyst for biodiesel production from Jatropha curcas oil," Renewable Energy, Elsevier, vol. 173(C), pages 415-421.
    12. Shu, Qing & Gao, Jixian & Nawaz, Zeeshan & Liao, Yuhui & Wang, Dezheng & Wang, Jinfu, 2010. "Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst," Applied Energy, Elsevier, vol. 87(8), pages 2589-2596, August.
    13. Tang, Zo-Ee & Lim, Steven & Pang, Yean-Ling & Ong, Hwai-Chyuan & Lee, Keat-Teong, 2018. "Synthesis of biomass as heterogeneous catalyst for application in biodiesel production: State of the art and fundamental review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 235-253.
    14. Abdullah, Sharifah Hanis Yasmin Sayid & Hanapi, Nur Hanis Mohamad & Azid, Azman & Umar, Roslan & Juahir, Hafizan & Khatoon, Helena & Endut, Azizah, 2017. "A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1040-1051.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Gaoqiang & Xie, Wenlei, 2024. "Hierarchical porous SAPO-34 decorated with Mo and W oxides for concurrent transesterification-esterifications for efficient biodiesel production from acidic soybean oil," Renewable Energy, Elsevier, vol. 222(C).
    2. Das, Arpita & Li, Hui & Kataki, Rupam & Agrawal, Pratibha S. & Moyon, N.S. & Gurunathan, Baskar & Rokhum, Samuel Lalthazuala, 2023. "Terminalia arjuna bark – A highly efficient renewable heterogeneous base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 212(C), pages 185-196.
    3. Aghababaeian, Shiva & Beygzadeh, Mojtaba & Dehghan, Maziar & Halek, Farah-Sadat & Aminy, Mohammad, 2024. "Energy and economic aspects of efficient radiative heating for biodiesel production: Prospects and challenges of using solid magnetic CaO/CoFe2O4 nano-catalyst," Energy, Elsevier, vol. 289(C).
    4. Saikia, Kankana & Das, Arpita & Sema, Atoholi H. & Basumatary, Sanjay & Shaemningwar Moyon, N. & Mathimani, Thangavel & Rokhum, Samuel Lalthazuala, 2024. "Response surface optimization, kinetics, thermodynamics, and life cycle cost analysis of biodiesel production from Jatropha curcas oil using biomass-based functional activated carbon catalyst," Renewable Energy, Elsevier, vol. 229(C).
    5. Yuan, Zong & Zhu, Jishen & Lu, Jie & Li, Yueyun & Ding, Jincheng, 2024. "Preparation of biodiesel by transesterification of castor oil catalyzed by flaky halloysite supported ZnO/SnO2 heterojunction photocatalyst," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Zailan, Zarifah & Tahir, Muhammad & Jusoh, Mazura & Zakaria, Zaki Yamani, 2021. "A review of sulfonic group bearing porous carbon catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 175(C), pages 430-452.
    3. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    4. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    5. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    6. Saikia, Kankana & Das, Arpita & Sema, Atoholi H. & Basumatary, Sanjay & Shaemningwar Moyon, N. & Mathimani, Thangavel & Rokhum, Samuel Lalthazuala, 2024. "Response surface optimization, kinetics, thermodynamics, and life cycle cost analysis of biodiesel production from Jatropha curcas oil using biomass-based functional activated carbon catalyst," Renewable Energy, Elsevier, vol. 229(C).
    7. Zhang, Bingxin & Gao, Ming & Tang, Weiqi & Wang, Xiaona & Wu, Chuanfu & Wang, Qunhui & Cheung, Siu Ming & Chen, Xiankun, 2023. "Esterification efficiency improvement of carbon-based solid acid catalysts induced by biomass pretreatments: Intrinsic mechanism," Energy, Elsevier, vol. 263(PB).
    8. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    9. Borugadda, Venu Babu & Goud, Vaibhav V., 2012. "Biodiesel production from renewable feedstocks: Status and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4763-4784.
    10. Kazemi Shariat Panahi, Hamed & Hosseinzadeh-Bandbafha, Homa & Dehhaghi, Mona & Orooji, Yasin & Mahian, Omid & Shahbeik, Hossein & Kiehbadroudinezhad, Mohammadali & Kalam, Md Abul & Karimi-Maleh, Hassa, 2024. "Nanotechnology applications in biodiesel processing and production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Kalam, M.A. & Ahamed, J.U. & Masjuki, H.H., 2012. "Land availability of Jatropha production in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3999-4007.
    12. Aisien, Felix Aibuedefe & Aisien, Eki Tina, 2023. "Modeling and optimization of transesterification of rubber seed oil using sulfonated CaO derived from giant African land snail (Achatina fulica) catalyst by response surface methodology," Renewable Energy, Elsevier, vol. 207(C), pages 137-146.
    13. Aghel, Babak & Biabani, Arash, 2024. "Using solar microreactors and photocatalysts to synthesize biodiesel," Renewable Energy, Elsevier, vol. 220(C).
    14. Ali, Adnan Hayel & Wanderlind, Eduardo H. & Almerindo, Gizelle I., 2024. "Activated carbon obtained from malt bagasse as a support in heterogeneous catalysis for biodiesel production," Renewable Energy, Elsevier, vol. 220(C).
    15. Petr Procházka & Luboš Smutka & Vladimír Hönig, 2019. "Using Biofuels for Highly Renewable Electricity Systems: A Case Study of the Jatropha curcas," Energies, MDPI, vol. 12(15), pages 1-17, August.
    16. Cong, Wen-Jie & Wang, Yi-Tong & Li, Hu & Fang, Zhen & Sun, Jie & Liu, Hai-Tong & Liu, Jie-Teng & Tang, Song & Xu, Lujiang, 2020. "Direct production of biodiesel from waste oils with a strong solid base from alkalized industrial clay ash," Applied Energy, Elsevier, vol. 264(C).
    17. Mofijur, M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Liaquat, A.M. & Shahabuddin, M. & Varman, M., 2012. "Prospects of biodiesel from Jatropha in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5007-5020.
    18. Baral, Nawa Raj & Neupane, Pratikshya & Ale, Bhakta Bahadur & Quiroz-Arita, Carlos & Manandhar, Shishir & Bradley, Thomas H., 2020. "Stochastic economic and environmental footprints of biodiesel production from Jatropha curcas Linnaeus in the different federal states of Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Binhweel, Fozy & Pyar, Hassan & Senusi, Wardah & Shaah, Marwan Abdulhakim & Hossain, Md Sohrab & Ahmad, Mardiana Idayu, 2023. "Utilization of marine ulva lactuca seaweed and freshwater azolla filiculoides macroalgae feedstocks toward biodiesel production: Kinetics, thermodynamics, and optimization studies," Renewable Energy, Elsevier, vol. 205(C), pages 717-730.
    20. Yu, Hewei & Cao, Yunlong & Li, Heyao & Zhao, Gaiju & Zhang, Xingyu & Cheng, Shen & Wei, Wei, 2021. "An efficient heterogeneous acid catalyst derived from waste ginger straw for biodiesel production," Renewable Energy, Elsevier, vol. 176(C), pages 533-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:206:y:2023:i:c:p:597-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.