IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v204y2023icp546-555.html
   My bibliography  Save this article

Piezoelectric energy harvesting from extremely low-frequency vibrations via gravity induced self-excited resonance

Author

Listed:
  • Li, Zhongjie
  • Zhao, Li
  • Wang, Junlei
  • Yang, Zhengbao
  • Peng, Yan
  • Xie, Shaorong
  • Ding, Jiheng

Abstract

In this paper, we originally present a gravity induced self-excited vibration generator based on a cantilever piezoelectric resonator. The configuration is composed of a sliding rod, a sleeve, a transduction unit. To estimate output voltage and investigate dynamic responses of the generator, an equivalent model based on mechanical structure was established and numerically solved. The effects of the cantilever length, tip mass and linear coupling factor on the open circuit voltage were discussed. In addition, we also conducted series of experiments to validate the theoretical responses. In a 10s cycle (namely 0.1Hz excitation frequency) scenario, the transduction unit responds with structural resonant frequency of 8.621Hz. The results of the experiments show that the open circuit voltage of the generator increases with increment of the cantilever beam length and the tip mass, which agrees well with simulation estimations. We also conducted impedance matching experiments to examine power response in the load spectrum, of which the results indicate that the prototype peak power reaches maximum 1.897 mW. We also discussed the change of gravity potential energy of the prototype and compared it with electric energy. This work provides a novel approach for piezoelectric energy harvesting from extremely low frequency excitations.

Suggested Citation

  • Li, Zhongjie & Zhao, Li & Wang, Junlei & Yang, Zhengbao & Peng, Yan & Xie, Shaorong & Ding, Jiheng, 2023. "Piezoelectric energy harvesting from extremely low-frequency vibrations via gravity induced self-excited resonance," Renewable Energy, Elsevier, vol. 204(C), pages 546-555.
  • Handle: RePEc:eee:renene:v:204:y:2023:i:c:p:546-555
    DOI: 10.1016/j.renene.2022.12.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122019036
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.12.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cha, Youngsu & Chae, Woojin & Kim, Hubert & Walcott, Horace & Peterson, Sean D. & Porfiri, Maurizio, 2016. "Energy harvesting from a piezoelectric biomimetic fish tail," Renewable Energy, Elsevier, vol. 86(C), pages 449-458.
    2. Yu, Gang & He, Lipeng & Zhou, Jianwen & Liu, Lei & Zhang, Bangcheng & Cheng, Guangming, 2021. "Study on mirror-image rotating piezoelectric energy harvester," Renewable Energy, Elsevier, vol. 178(C), pages 692-700.
    3. Ali, Gibran & Wagner, John & Moline, David & Schweisinger, Todd, 2015. "Energy harvesting from atmospheric variations – Theory and test," Renewable Energy, Elsevier, vol. 74(C), pages 528-535.
    4. Cai, Wenzheng & Roussinova, Vesselina & Stoilov, Vesselin, 2022. "Piezoelectric wave energy harvester," Renewable Energy, Elsevier, vol. 196(C), pages 973-982.
    5. Gong, Ying & Shan, Xiaobiao & Luo, Xiaowei & Pan, Jia & Xie, Tao & Yang, Zhengbao, 2019. "Direction-adaptive energy harvesting with a guide wing under flow-induced oscillations," Energy, Elsevier, vol. 187(C).
    6. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    7. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    8. Jiaquan Xie & Yongjiang Zheng & Zhongkai Ren & Tao Wang & Guangxian Shen, 2019. "Numerical Vibration Displacement Solutions of Fractional Drawing Self-Excited Vibration Model Based on Fractional Legendre Functions," Complexity, Hindawi, vol. 2019, pages 1-10, December.
    9. Yayla, Sedat & Ayça, Sümeyya & Oruç, Mehmet, 2020. "A case study on piezoelectric energy harvesting with using vortex generator plate modeling for fluids," Renewable Energy, Elsevier, vol. 157(C), pages 1243-1253.
    10. Li Long & Wenlin Liu & Zhao Wang & Wencong He & Gui Li & Qian Tang & Hengyu Guo & Xianjie Pu & Yike Liu & Chenguo Hu, 2021. "High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Qi, Lingfei & Li, Hai & Wu, Xiaoping & Zhang, Zutao & Duan, Wenjun & Yi, Minyi, 2021. "A hybrid piezoelectric-electromagnetic wave energy harvester based on capsule structure for self-powered applications in sea-crossing bridges," Renewable Energy, Elsevier, vol. 178(C), pages 1223-1235.
    12. Kazemi, Shahriar & Nili-Ahmadabadi, Mahdi & Tavakoli, Mohammad Reza & Tikani, Reza, 2021. "Energy harvesting from longitudinal and transverse motions of sea waves particles using a new waterproof piezoelectric waves energy harvester," Renewable Energy, Elsevier, vol. 179(C), pages 528-536.
    13. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    14. Shuguang Zuo & Xianglei Duan & Yong Li, 2014. "Study on Dynamics of Polygonal Wear of Automotive Tire Caused by Self-Excited Vibration," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-12, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Shanghao & Xu, Weihan & Xi, Kunling & Luo, Anxin & Fan, Kangqi & Wang, Fei, 2024. "High-performance piezoelectric energy harvesting system with anti-interference capability for smart grid monitoring," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.
    2. Kim, Ki Jong & Kim, Junyoung & Kim, Daegyoum, 2023. "Slosh-induced piezoelectric energy harvesting in a liquid tank," Renewable Energy, Elsevier, vol. 206(C), pages 409-417.
    3. Wang, Yilong & Yang, Zhengbao & Cao, Dengqing, 2021. "On the offset distance of rotational piezoelectric energy harvesters," Energy, Elsevier, vol. 220(C).
    4. Yu, Gang & He, Lipeng & Wang, Hongxin & Sun, Lei & Zhang, Zhonghua & Cheng, Guangming, 2023. "Research of rotating piezoelectric energy harvester for automotive motion," Renewable Energy, Elsevier, vol. 211(C), pages 484-493.
    5. Qian, Feng & Liu, Mingyi & Huang, Jianuo & Zhang, Jiajun & Jung, Hyunjun & Deng, Zhiqun Daniel & Hajj, Muhammad R. & Zuo, Lei, 2022. "Bio-inspired bistable piezoelectric energy harvester for powering animal telemetry tags: Conceptual design and preliminary experimental validation," Renewable Energy, Elsevier, vol. 187(C), pages 34-43.
    6. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    7. Zou, Hong-Xiang & Li, Meng & Zhao, Lin-Chuan & Gao, Qiu-Hua & Wei, Ke-Xiang & Zuo, Lei & Qian, Feng & Zhang, Wen-Ming, 2021. "A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting," Energy, Elsevier, vol. 217(C).
    8. Zuo, Jianyong & Dong, Liwei & Yang, Fan & Guo, Ziheng & Wang, Tianpeng & Zuo, Lei, 2023. "Energy harvesting solutions for railway transportation: A comprehensive review," Renewable Energy, Elsevier, vol. 202(C), pages 56-87.
    9. Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
    10. He, Lipeng & Liu, Renwen & Liu, Xuejin & Zhang, Zheng & Zhang, Limin & Cheng, Guangming, 2023. "A novel piezoelectric wave energy harvester based on cylindrical-conical buoy structure and magnetic coupling," Renewable Energy, Elsevier, vol. 210(C), pages 397-407.
    11. Demir, Hasan, 2024. "Simulation and forecasting of power by energy harvesting method in photovoltaic panels using artificial neural network," Renewable Energy, Elsevier, vol. 222(C).
    12. Xu, Yifei & Xian, Tongrui & Chen, Chen & Wang, Guosen & Wang, Mengdi & Shi, Weijie, 2024. "Mathematical modeling and parameter optimization of a stacked piezoelectric energy harvester based on water pressure pulsation," Energy, Elsevier, vol. 292(C).
    13. Zhou, Xu & Wang, Kangda & Li, Siyu & Wang, Yadong & Sun, Daoyu & Wang, Longlong & He, Zhizhu & Tang, Wei & Liu, Huicong & Jin, Xiaoping & Li, Zhen, 2024. "An ultra-compact lightweight electromagnetic generator enhanced with Halbach magnet array and printed triphase windings," Applied Energy, Elsevier, vol. 353(PA).
    14. Xian, Tongrui & Xu, Yifei & Chen, Chen & Luo, Xiaohui & Zhao, Haixia & Zhang, Yongtao & Shi, Weijie, 2024. "Experimental and theory study on a stacked piezoelectric energy harvester for pressure pulsation in water hydraulic system," Renewable Energy, Elsevier, vol. 225(C).
    15. Alqaleiby, Hossam & Ayyad, Mahmoud & Hajj, Muhammad R. & Ragab, Saad A. & Zuo, Lei, 2024. "Effects of piezoelectric energy harvesting from a morphing flapping tail on its performance," Applied Energy, Elsevier, vol. 353(PA).
    16. Helseth, L.E. & Guo, X.D., 2016. "Fluorinated ethylene propylene thin film for water droplet energy harvesting," Renewable Energy, Elsevier, vol. 99(C), pages 845-851.
    17. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    18. Li, Zhongjie & Jiang, Xiaomeng & Xu, Wanqing & Gong, Ying & Peng, Yan & Zhong, Songyi & Xie, Shaorong, 2022. "Performance comparison of electromagnetic generators based on different circular magnet arrangements," Energy, Elsevier, vol. 258(C).
    19. Na, Yonghyeon & Lee, Min-Seon & Lee, Jung Woo & Jeong, Young Hun, 2020. "Wind energy harvesting from a magnetically coupled piezoelectric bimorph cantilever array based on a dynamic magneto-piezo-elastic structure," Applied Energy, Elsevier, vol. 264(C).
    20. Nan Wu & Yuncheng He & Jiyang Fu & Peng Liao, 2021. "Study of the Properties of a Hybrid Piezoelectric and Electromagnetic Energy Harvester for a Civil Engineering Low-Frequency Sloshing Environment," Energies, MDPI, vol. 14(2), pages 1-11, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:204:y:2023:i:c:p:546-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.