IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224007679.html
   My bibliography  Save this article

Comparative analysis of flag based energy harvester undergoing extraneous induced excitation

Author

Listed:
  • Latif, Usman
  • Dowell, Earl H.
  • Uddin, E.
  • Younis, M.Y.
  • Frisch, H.M.

Abstract

This study presents a detailed comparative analysis of the piezoelectric flexible plate under the influence of oscillating wakes of different bluff bodies. The piezoelectric plate is tested to determine the optimal configuration for energy harvesting from the wake flow of bluff bodies with different cross-sections in a low-speed closed-circuit wind tunnel. The Reynolds number is varied from 10000 to 75000 and the distance between the bluff body and plate is changed from 1D to 7D (where D is the diameter of the bluff body). The flutter of the plate without a bluff body is considered as a benchmark case and then subsequently the bluff bodies are introduced to see energy generation behavior. The results show that the bluff body caused a significant reduction of 50% in the flow speed as compared to the flutter case along with an improvement of 847% in energy harvesting output. Furthermore, selecting an appropriate bluff body ensures higher peak-to-peak flapping amplitude, which in turn produces a higher amount of electrical energy due to higher bending curvature and resultant strain produced in the piezoelectric plate. An increase of 125% in flapping amplitude is obtained using a bluff body compared to the flutter case. Furthermore, comparison within the various bluff bodies shows that change in cross-section has an enormous impact on output, and an increase of 515% in output power is obtained compared to the typical circular bluff body, which is more often quoted in the literature. Additionally, bending modes are identified and the variation in output power is linked with the flapping behavior of the piezoelectric plate, which is helpful in understanding the energy generation behavior of the piezo plate.

Suggested Citation

  • Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007679
    DOI: 10.1016/j.energy.2024.130995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007679
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130995?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
    2. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    3. Sultana, Ayesha & Alam, Md. Mehebub & Middya, Tapas Ranjan & Mandal, Dipankar, 2018. "A pyroelectric generator as a self-powered temperature sensor for sustainable thermal energy harvesting from waste heat and human body heat," Applied Energy, Elsevier, vol. 221(C), pages 299-307.
    4. Shun Yamaguchi & Masaki Kobayashi & Shigeru Mitsui & Yoshiki Ishida & Gijsbertus T. J. van der Horst & Misao Suzuki & Shigenobu Shibata & Hitoshi Okamura, 2001. "View of a mouse clock gene ticking," Nature, Nature, vol. 409(6821), pages 684-684, February.
    5. Zhou, Jiaxi & Zhao, Xuhui & Wang, Kai & Chang, Yaopeng & Xu, Daolin & Wen, Guilin, 2021. "Bio-inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation," Energy, Elsevier, vol. 228(C).
    6. Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
    7. Sun, Weipeng & Zhao, Daoli & Tan, Ting & Yan, Zhimiao & Guo, Pengcheng & Luo, Xingqi, 2019. "Low velocity water flow energy harvesting using vortex induced vibration and galloping," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    9. Yu, Haiyan & Zhang, Mingjie, 2021. "Effects of side ratio on energy harvesting from transverse galloping of a rectangular cylinder," Energy, Elsevier, vol. 226(C).
    10. Usman, Muhammad & Hanif, Asad & Kim, In-Ho & Jung, Hyung-Jo, 2018. "Experimental validation of a novel piezoelectric energy harvesting system employing wake galloping phenomenon for a broad wind spectrum," Energy, Elsevier, vol. 153(C), pages 882-889.
    11. Rezaei, Masoud & Talebitooti, R. & Rahmanian, Sasan, 2019. "Efficient energy harvesting from nonlinear vibrations of PZT beam under simultaneous resonances," Energy, Elsevier, vol. 182(C), pages 369-380.
    12. Latif, U. & Uddin, E. & Younis, M.Y. & Aslam, J. & Ali, Z. & Sajid, M. & Abdelkefi, A., 2021. "Experimental electro-hydrodynamic investigation of flag-based energy harvesting in the wake of inverted C-shape cylinder," Energy, Elsevier, vol. 215(PB).
    13. Wang, Xiang & Chen, Changsong & Wang, Na & San, Haisheng & Yu, Yuxi & Halvorsen, Einar & Chen, Xuyuan, 2017. "A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques," Applied Energy, Elsevier, vol. 190(C), pages 368-375.
    14. Orrego, Santiago & Shoele, Kourosh & Ruas, Andre & Doran, Kyle & Caggiano, Brett & Mittal, Rajat & Kang, Sung Hoon, 2017. "Harvesting ambient wind energy with an inverted piezoelectric flag," Applied Energy, Elsevier, vol. 194(C), pages 212-222.
    15. Latif, Usman & Younis, M. Yamin & Idrees, Saad & Uddin, Emad & Abdelkefi, Abdessattar & Munir, Adnan & Zhao, Ming, 2023. "Synergistic analysis of wake effect of two cylinders on energy harvesting characteristics of piezoelectric flag," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Knut K. W. Kampe & Chris D. Frith & Raymond J. Dolan & Uta Frith, 2001. "Reward value of attractiveness and gaze," Nature, Nature, vol. 413(6856), pages 589-589, October.
    17. Albert D. M. E. Osterhaus, 2001. "Virology in all its guises," Nature, Nature, vol. 409(6816), pages 19-20, January.
    18. Mujtaba, A. & Latif, U. & Uddin, E. & Younis, M.Y. & Sajid, M. & Ali, Z. & Abdelkefi, A., 2021. "Hydrodynamic energy harvesting analysis of two piezoelectric tandem flags under influence of upstream body’s wakes," Applied Energy, Elsevier, vol. 282(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
    2. Kim, Ki Jong & Kim, Junyoung & Kim, Daegyoum, 2023. "Slosh-induced piezoelectric energy harvesting in a liquid tank," Renewable Energy, Elsevier, vol. 206(C), pages 409-417.
    3. Ying Wu & Zhi Cheng & Ryley McConkey & Fue-Sang Lien & Eugene Yee, 2022. "Modelling of Flow-Induced Vibration of Bluff Bodies: A Comprehensive Survey and Future Prospects," Energies, MDPI, vol. 15(22), pages 1-63, November.
    4. Latif, U. & Uddin, E. & Younis, M.Y. & Aslam, J. & Ali, Z. & Sajid, M. & Abdelkefi, A., 2021. "Experimental electro-hydrodynamic investigation of flag-based energy harvesting in the wake of inverted C-shape cylinder," Energy, Elsevier, vol. 215(PB).
    5. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    6. Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
    7. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Tian, Haigang & Shan, Xiaobiao & Sui, Guangdong & Xie, Tao, 2022. "Enhanced performance of piezoaeroelastic energy harvester with rod-shaped attachments," Energy, Elsevier, vol. 238(PB).
    9. Fan, Xiantao & Guo, Kai & Wang, Yang, 2022. "Toward a high performance and strong resilience wind energy harvester assembly utilizing flow-induced vibration: Role of hysteresis," Energy, Elsevier, vol. 251(C).
    10. Mujtaba, A. & Latif, U. & Uddin, E. & Younis, M.Y. & Sajid, M. & Ali, Z. & Abdelkefi, A., 2021. "Hydrodynamic energy harvesting analysis of two piezoelectric tandem flags under influence of upstream body’s wakes," Applied Energy, Elsevier, vol. 282(PA).
    11. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    12. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    13. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    14. Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
    15. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    16. Liu, Feng-Rui & Zhang, Wen-Ming & Zhao, Lin-Chuan & Zou, Hong-Xiang & Tan, Ting & Peng, Zhi-Ke & Meng, Guang, 2020. "Performance enhancement of wind energy harvester utilizing wake flow induced by double upstream flat-plates," Applied Energy, Elsevier, vol. 257(C).
    17. Zhao, Fuwang & Wang, Zhaokun & Bai, Honglei & Tang, Hui, 2023. "Energy harvesting based on flow-induced vibration of a wavy cylinder coupled with tuned mass damper," Energy, Elsevier, vol. 282(C).
    18. Li, Huaijun & Bernitsas, Christopher C. & Congpuong, Nipit & Bernitsas, Michael M. & Sun, Hai, 2024. "Experimental investigation on synergistic flow-induced oscillation of three rough tandem-cylinders in hydrokinetic energy conversion," Applied Energy, Elsevier, vol. 359(C).
    19. Shan, Xiaobiao & Sui, Guangdong & Tian, Haigang & Min, Zhaowei & Feng, Ju & Xie, Tao, 2022. "Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration," Energy, Elsevier, vol. 241(C).
    20. Dang, Shuai & Hou, Chengwei & Shan, Xiaobiao & Sui, Guangdong & Zhang, Xiaofan, 2024. "A novel T-shaped beam bistable piezoelectric energy harvester with a moving magnet," Energy, Elsevier, vol. 300(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.