IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v312y2024ics0360544224034145.html
   My bibliography  Save this article

A novel double-arch piezoelectric energy harvester for capturing railway track vibration energy

Author

Listed:
  • Min, Zhaowei
  • Chen, Yifeng
  • Shan, Xiaobiao
  • Xie, Tao

Abstract

This study introduces a novel piezoelectric stack energy harvester with a double-arched frame structure. This design effectively cushions impacts from track vibrations, thereby protecting the fragile piezoelectric stack made of brittle materials. The energy harvesting characteristics of the device are studied in detail through experiments and theoretical simulations. The harvester's output voltage depends on the external resistance and increases with higher resistance. The optimal resistance for the single X-direction piezoelectric stack is 340 kΩ, which can output 0.519 mW of power under a 3Hz frequency and an 8 kN sinusoidal load. The Y-direction piezoelectric stack outputs 0.012 mW, resulting in a total output of 1.050 mW for the entire harvester. The output power of the harvester is positively correlated with the load vibration frequency, increasing rapidly for frequencies below 9Hz. The impact of load magnitude on the harvester's output shows a generally linear increase. In impact experiments, the single X-direction piezoelectric stack successfully lit 54 LEDs under a 5J energy impact, demonstrating the harvester's high power density and potential for practical applications.

Suggested Citation

  • Min, Zhaowei & Chen, Yifeng & Shan, Xiaobiao & Xie, Tao, 2024. "A novel double-arch piezoelectric energy harvester for capturing railway track vibration energy," Energy, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034145
    DOI: 10.1016/j.energy.2024.133636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:312:y:2024:i:c:s0360544224034145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.