IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp845-851.html
   My bibliography  Save this article

Fluorinated ethylene propylene thin film for water droplet energy harvesting

Author

Listed:
  • Helseth, L.E.
  • Guo, X.D.

Abstract

We investigate water droplet energy harvesting using transparent hydrophobic polymers. The hydrophobic polymer acts as protection while at the same time harvest energy from the impacting water droplets. The electrodes are mounted at the edges of a transparent window. Such a scheme has the advantage that it allows easy integration with existing technologies and avoids the extra costs and reduced transmittance upon incorporation of partially transparent oxide electrodes covering the entire polymer. Since the electrodes are mounted at the edges of the hydrophobic polymer, the transmittance through the transparent portion is very high, here shown to be >94% for visible light when using thin films of fluorinated ethylene propylene (FEP). It is demonstrated that the system can be mounted on a commercial solar cell for harvesting electrical power from the impact of water droplets, generating an average power of up to 10 mW per square meter of electrode area.

Suggested Citation

  • Helseth, L.E. & Guo, X.D., 2016. "Fluorinated ethylene propylene thin film for water droplet energy harvesting," Renewable Energy, Elsevier, vol. 99(C), pages 845-851.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:845-851
    DOI: 10.1016/j.renene.2016.07.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116306929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Korotkevich, Alexander O. & Galochkina, Zhanna S. & Lavrova, Olga & Coutsias, Evangelos A., 2015. "On the comparison of energy sources: Feasibility of radio frequency and ambient light harvesting," Renewable Energy, Elsevier, vol. 81(C), pages 804-807.
    2. Ye, Hong & Meng, Xianchun & Long, Linshuang & Xu, Bin, 2013. "The route to a perfect window," Renewable Energy, Elsevier, vol. 55(C), pages 448-455.
    3. Ali, Gibran & Wagner, John & Moline, David & Schweisinger, Todd, 2015. "Energy harvesting from atmospheric variations – Theory and test," Renewable Energy, Elsevier, vol. 74(C), pages 528-535.
    4. Ilyas, Mohammad Adnan & Swingler, Jonathan, 2015. "Piezoelectric energy harvesting from raindrop impacts," Energy, Elsevier, vol. 90(P1), pages 796-806.
    5. Harb, Adnan, 2011. "Energy harvesting: State-of-the-art," Renewable Energy, Elsevier, vol. 36(10), pages 2641-2654.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helseth, L.E. & Wen, H.Z., 2017. "Evaluation of the energy generation potential of rain cells," Energy, Elsevier, vol. 119(C), pages 472-482.
    2. Neo, Rong Gen & Khoo, Boo Cheong, 2021. "Towards a larger scale energy harvesting from falling water droplets with an improved electrode configuration," Applied Energy, Elsevier, vol. 285(C).
    3. Helseth, L.E., 2021. "Harvesting energy from light and water droplets by covering photovoltaic cells with transparent polymers," Applied Energy, Elsevier, vol. 300(C).
    4. Krzysztof A. Bogdanowicz, 2021. "Bi-Triggering Energy Harvesters: Is It Possible to Generate Energy in a Solar Panel under Any Conditions?," Energies, MDPI, vol. 14(18), pages 1-28, September.
    5. Wijewardhana, K. Rohana & Ekanayaka, Thilini K. & Jayaweera, E.N. & Shahzad, Amir & Song, Jang-Kun, 2018. "Integration of multiple bubble motion active transducers for improving energy-harvesting efficiency," Energy, Elsevier, vol. 160(C), pages 648-653.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kan, Junwu & Fu, Jiawei & Wang, Shuyun & Zhang, Zhonghua & Chen, Song & Yang, Can, 2017. "Study on a piezo-disk energy harvester excited by rotary magnets," Energy, Elsevier, vol. 122(C), pages 62-69.
    2. Hu, Xin & Zhang, Yingbo & Cai, Wei & Ming, Yang & Yu, Rujun & Yang, Hongyu & Noor, Nuruzzaman & Fei, Bin, 2023. "Transparent wood with heat shielding and high fire safety properties for energy saving applications," Renewable Energy, Elsevier, vol. 219(P1).
    3. Xie, Xing & Xu, Bin & Cheng, Yuan-xia & Pei, Gang, 2023. "New method of integrating experiment for maintaining low indoor temperature into numerical modelling: A feasibility demonstration in reduced-scale building model," Energy, Elsevier, vol. 284(C).
    4. Yang, Chen & Xue, RuiPu & Li, Xu & Zhang, XiaoQing & Wu, ZhenYu, 2020. "Power performance of solar energy harvesting system under typical indoor light sources," Renewable Energy, Elsevier, vol. 161(C), pages 836-845.
    5. Alluri, Nagamalleswara Rao & Selvarajan, Sophia & Chandrasekhar, Arunkumar & Saravanakumar, Balasubramaniam & Lee, Gae Myoung & Jeong, Ji Hyun & Kim, Sang-Jae, 2017. "Worm structure piezoelectric energy harvester using ionotropic gelation of barium titanate-calcium alginate composite," Energy, Elsevier, vol. 118(C), pages 1146-1155.
    6. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    7. Ye, Hong & Long, Linshuang & Zhang, Haitao & Zou, Ruqiang, 2014. "The performance evaluation of shape-stabilized phase change materials in building applications using energy saving index," Applied Energy, Elsevier, vol. 113(C), pages 1118-1126.
    8. Aleksandrova, M.P. & Tsanev, T.D. & Pandiev, I.M. & Dobrikov, G.H., 2020. "Study of piezoelectric behaviour of sputtered KNbO3 nanocoatings for flexible energy harvesting," Energy, Elsevier, vol. 205(C).
    9. Md Fahim Tanvir Hossain & Samer Dessouky & Ayetullah B. Biten & Arturo Montoya & Daniel Fernandez, 2021. "Harvesting Solar Energy from Asphalt Pavement," Sustainability, MDPI, vol. 13(22), pages 1-25, November.
    10. Shaikh, Faisal Karim & Zeadally, Sherali, 2016. "Energy harvesting in wireless sensor networks: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1041-1054.
    11. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    12. Bao, Bin & Chen, Wen & Wang, Quan, 2019. "A piezoelectric hydro-energy harvester featuring a special container structure," Energy, Elsevier, vol. 189(C).
    13. Ilyas, Mohammad Adnan & Swingler, Jonathan, 2017. "Towards a prototype module for piezoelectric energy harvesting from raindrop impacts," Energy, Elsevier, vol. 125(C), pages 716-725.
    14. Yujing Zhou & Chunhua Liu & Yongcan Huang, 2020. "Wireless Power Transfer for Implanted Medical Application: A Review," Energies, MDPI, vol. 13(11), pages 1-30, June.
    15. Alex Mouapi & Nadir Hakem & Nahi Kandil, 2019. "Cantilevered Piezoelectric Micro Generator Design Issues and Application to the Mining Locomotive," Energies, MDPI, vol. 13(1), pages 1-28, December.
    16. Ando Junior, O.H. & Maran, A.L.O. & Henao, N.C., 2018. "A review of the development and applications of thermoelectric microgenerators for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 376-393.
    17. Turkmen, Anil Can & Celik, Cenk, 2018. "Energy harvesting with the piezoelectric material integrated shoe," Energy, Elsevier, vol. 150(C), pages 556-564.
    18. Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2019. "Impact of Low-E Window Films on Energy Consumption and CO 2 Emissions of an Existing UK Hotel Building," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    19. Cansiz, Mustafa & Altinel, Dogay & Kurt, Gunes Karabulut, 2019. "Efficiency in RF energy harvesting systems: A comprehensive review," Energy, Elsevier, vol. 174(C), pages 292-309.
    20. Wang, Feng & Sun, Xiuting & Xu, Jian, 2018. "A novel energy harvesting device for ultralow frequency excitation," Energy, Elsevier, vol. 151(C), pages 250-260.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:845-851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.