Direction-adaptive energy harvesting with a guide wing under flow-induced oscillations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.115983
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Rostami, Ali Bakhshandeh & Armandei, Mohammadmehdi, 2017. "Renewable energy harvesting by vortex-induced motions: Review and benchmarking of technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 193-214.
- Narendran, K. & Murali, K. & Sundar, V., 2016. "Investigations into efficiency of vortex induced vibration hydro-kinetic energy device," Energy, Elsevier, vol. 109(C), pages 224-235.
- Yin, Xiuxing & Zhao, Xiaowei & Zhang, Wencan, 2018. "A novel hydro-kite like energy converter for harnessing both ocean wave and current energy," Energy, Elsevier, vol. 158(C), pages 1204-1212.
- Chandra Mouli, G.R. & Bauer, P. & Zeman, M., 2016. "System design for a solar powered electric vehicle charging station for workplaces," Applied Energy, Elsevier, vol. 168(C), pages 434-443.
- Vidya Chandran & Sekar M. & Sheeja Janardhanan & Varun Menon, 2018. "Numerical Study on the Influence of Mass and Stiffness Ratios on the Vortex Induced Motion of an Elastically Mounted Cylinder for Harnessing Power," Energies, MDPI, vol. 11(10), pages 1-23, September.
- Naseer, R. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2017. "Piezomagnetoelastic energy harvesting from vortex-induced vibrations using monostable characteristics," Applied Energy, Elsevier, vol. 203(C), pages 142-153.
- Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jia, Jinda & Shan, Xiaobiao & Upadrashta, Deepesh & Xie, Tao & Yang, Yaowen & Song, Rujun, 2020. "An asymmetric bending-torsional piezoelectric energy harvester at low wind speed," Energy, Elsevier, vol. 198(C).
- Li, Zhongjie & Zhao, Li & Wang, Junlei & Yang, Zhengbao & Peng, Yan & Xie, Shaorong & Ding, Jiheng, 2023. "Piezoelectric energy harvesting from extremely low-frequency vibrations via gravity induced self-excited resonance," Renewable Energy, Elsevier, vol. 204(C), pages 546-555.
- Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
- Wang, Yilong & Yang, Zhengbao & Cao, Dengqing, 2021. "On the offset distance of rotational piezoelectric energy harvesters," Energy, Elsevier, vol. 220(C).
- He, Lipeng & Wang, Shuangjian & Zheng, Xiaotian & Liu, Lei & Tian, Xiaochao & Sun, Baoyu, 2022. "Research-based on a low-frequency non-contact magnetic coupling piezoelectric energy harvester," Energy, Elsevier, vol. 258(C).
- Zhang, Liufeng & Zhang, Feibin & Qin, Zhaoye & Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Piezoelectric energy harvester for rolling bearings with capability of self-powered condition monitoring," Energy, Elsevier, vol. 238(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qin, Weiyang & Deng, Wangzheng & Pan, Jianan & Zhou, Zhiyong & Du, Wenfeng & Zhu, Pei, 2019. "Harvesting wind energy with bi-stable snap-through excited by vortex-induced vibration and galloping," Energy, Elsevier, vol. 189(C).
- Liu, Feng-Rui & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "Fork-shaped bluff body for enhancing the performance of galloping-based wind energy harvester," Energy, Elsevier, vol. 183(C), pages 92-105.
- Zheng, Mingrui & Han, Dong & Peng, Tao & Wang, Jincheng & Gao, Sijie & He, Weifeng & Li, Shirui & Zhou, Tianhao, 2022. "Numerical investigation on flow induced vibration performance of flow-around structures with different angles of attack," Energy, Elsevier, vol. 244(PA).
- Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
- Lin Ding & Qunfeng Zou & Li Zhang & Haibo Wang, 2018. "Research on Flow-Induced Vibration and Energy Harvesting of Three Circular Cylinders with Roughness Strips in Tandem," Energies, MDPI, vol. 11(11), pages 1-17, November.
- Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Lian, Jijian & Ran, Danjie & Yan, Xiang & Liu, Fang & Shao, Nan & Wang, Xiaoqun & Yang, Xu, 2023. "Hydrokinetic energy harvesting from flow-induced motion of oscillators with different combined sections," Energy, Elsevier, vol. 269(C).
- Kim, Eun Soo & Sun, Hai & Park, Hongrae & Shin, Sung-chul & Chae, Eun Jung & Ouderkirk, Ryan & Bernitsas, Michael M., 2021. "Development of an alternating lift converter utilizing flow-induced oscillations to harness horizontal hydrokinetic energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Du, Wenfeng, 2021. "Harvesting more energy from variable-speed wind by a multi-stable configuration with vortex-induced vibration and galloping," Energy, Elsevier, vol. 237(C).
- Ghotge, Rishabh & van Wijk, Ad & Lukszo, Zofia, 2021. "Off-grid solar charging of electric vehicles at long-term parking locations," Energy, Elsevier, vol. 227(C).
- Zhang, Baoshou & Song, Baowei & Mao, Zhaoyong & Li, Boyang & Gu, Mengfan, 2019. "Hydrokinetic energy harnessing by spring-mounted oscillators in FIM with different cross sections: From triangle to circle," Energy, Elsevier, vol. 189(C).
- Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
- Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
- Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
- Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
- Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
- Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
- Gharibpour, Hassan & Aminifar, Farrokh & Rahmati, Iman & Keshavarz, Arezou, 2021. "Dual variable decomposition to discriminate the cost imposed by inflexible units in electricity markets," Applied Energy, Elsevier, vol. 287(C).
- Julia Vopava & Christian Koczwara & Anna Traupmann & Thomas Kienberger, 2019. "Investigating the Impact of E-Mobility on the Electrical Power Grid Using a Simplified Grid Modelling Approach," Energies, MDPI, vol. 13(1), pages 1-23, December.
- Fang, Shitong & Du, Houfan & Yan, Tao & Chen, Keyu & Li, Zhiyuan & Ma, Xiaoqing & Lai, Zhihui & Zhou, Shengxi, 2024. "Theoretical and experimental investigation on the advantages of auxetic nonlinear vortex-induced vibration energy harvesting," Applied Energy, Elsevier, vol. 356(C).
More about this item
Keywords
Energy harvester; Piezoelectric; Vortex shedding; Directional sensitivity; Vibration;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:187:y:2019:i:c:s0360544219316779. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.