IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224032304.html
   My bibliography  Save this article

Design, modeling and experiments of bistable wave energy harvester with directional self-adaptive characteristics

Author

Listed:
  • Zeng, Xianming
  • Wu, Nan
  • Fu, Jiyang
  • He, Yuncheng
  • Dai, Xiaolong

Abstract

Wave energy is a abundant renewable resource, but the direction variability and ultra-low frequency limit its widespread application. Therefore, a novel bistable wave energy harvester with directional self-adaptive characteristics is proposed in this paper, which utilizes the collision between the driving ball and the generator beam to transform the multi-directional ultra-low frequency wave vibration into localized high-frequency vibration. Moreover, the theoretical analytical model of harvester when subjected to wave motions was established, including the dynamic analysis of driving ball before the collision, the collision response analysis during the collision, and the bistable properties of generator beam after the collision. Finally, the key parameters affecting the output performance, such as the mass of the driving ball, the maximum inclination angle of the wave and the external load resistance, were analyzed using experiments. The maximum open-circuit voltage RMS value is 1815.28 mV, and the maximum power is 2.06 μW. The proposed harvester can effectively harvest ultra-low frequency energy vibration energy in multi-directions.

Suggested Citation

  • Zeng, Xianming & Wu, Nan & Fu, Jiyang & He, Yuncheng & Dai, Xiaolong, 2024. "Design, modeling and experiments of bistable wave energy harvester with directional self-adaptive characteristics," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032304
    DOI: 10.1016/j.energy.2024.133454
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224032304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Shao-En & Pan, Fu-Ting & Yang, Ray-Yeng & Wu, Chia-Che, 2023. "A multi-physics system integration and modeling method for piezoelectric wave energy harvester," Applied Energy, Elsevier, vol. 349(C).
    2. Surducan, Vasile & Surducan, Emanoil & Gutt, Robert, 2020. "Harvesting and conversion of the environmental electromagnetic pollution into electrical energy by novel rectenna array coupled with resonant micro-converter," Energy, Elsevier, vol. 211(C).
    3. Zhou, Jiaxi & Zhao, Xuhui & Wang, Kai & Chang, Yaopeng & Xu, Daolin & Wen, Guilin, 2021. "Bio-inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation," Energy, Elsevier, vol. 228(C).
    4. Chen, Weilin & Li, Yuzhu, 2024. "Energy harvesting performance of an elastically mounted semi-circular cylinder," Renewable Energy, Elsevier, vol. 229(C).
    5. Qi, Lingfei & Li, Hai & Wu, Xiaoping & Zhang, Zutao & Duan, Wenjun & Yi, Minyi, 2021. "A hybrid piezoelectric-electromagnetic wave energy harvester based on capsule structure for self-powered applications in sea-crossing bridges," Renewable Energy, Elsevier, vol. 178(C), pages 1223-1235.
    6. Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.
    7. Shi, Ge & Tong, Dike & Xia, Yinshui & Jia, Shengyao & Chang, Jian & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2022. "A piezoelectric vibration energy harvester for multi-directional and ultra-low frequency waves with magnetic coupling driven by rotating balls," Applied Energy, Elsevier, vol. 310(C).
    8. Fu, Jiyang & Zeng, Xianming & Wu, Nan & Wu, Jiurong & He, Yuncheng & Xiong, Chao & Dai, Xiaolong & Jin, Peichen & Lai, Minyi, 2024. "Design, modeling and experiments of bistable piezoelectric energy harvester with self-decreasing potential energy barrier effect," Energy, Elsevier, vol. 300(C).
    9. Viet, N.V. & Wang, Q., 2018. "Ocean wave energy pitching harvester with a frequency tuning capability," Energy, Elsevier, vol. 162(C), pages 603-617.
    10. Nan, Wu & Yuncheng, He & Jiyang, Fu, 2021. "Bistable energy harvester using easy snap-through performance to increase output power," Energy, Elsevier, vol. 226(C).
    11. Kazemi, Shahriar & Nili-Ahmadabadi, Mahdi & Tavakoli, Mohammad Reza & Tikani, Reza, 2021. "Energy harvesting from longitudinal and transverse motions of sea waves particles using a new waterproof piezoelectric waves energy harvester," Renewable Energy, Elsevier, vol. 179(C), pages 528-536.
    12. Zhao, Daoli & Zhou, Jie & Tan, Ting & Yan, Zhimiao & Sun, Weipeng & Yin, Junlian & Zhang, Wenming, 2021. "Hydrokinetic piezoelectric energy harvesting by wake induced vibration," Energy, Elsevier, vol. 220(C).
    13. Liu, Renwen & He, Lipeng & Yang, Bowen & Li, Xiaotao & Zhang, Limin & Zhong, Feng, 2024. "A low-frequency piezoelectric wave energy harvester based on segmental beam and double magnetic excitation," Energy, Elsevier, vol. 302(C).
    14. Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
    15. Wang, Chen & Chai, Hongfei & Li, Gaolei & Wang, Wei & Tian, Ruilan & Wen, Gui-Lin & Wang, Chun H. & Lai, Siu-Kai, 2024. "Boosting biomechanical and wave energy harvesting efficiency through a novel triple hybridization of piezoelectric, electromagnetic, and triboelectric generators," Applied Energy, Elsevier, vol. 374(C).
    16. Shi, Ge & Zeng, Wentao & Xia, Yinshui & Xu, Jubing & Jia, Shengyao & Li, Qing & Wang, Xiudeng & Xia, Huakang & Ye, Yidie, 2023. "A floating piezoelectric electromagnetic hybrid wave vibration energy harvester actuated by a rotating wobble ball," Energy, Elsevier, vol. 270(C).
    17. Sun, Ruqi & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "Dual electromagnetic mechanisms with internal resonance for ultra-low frequency vibration energy harvesting," Applied Energy, Elsevier, vol. 369(C).
    18. Mehdi, Maryam & Ammari, Nabil & Alami Merrouni, Ahmed & Elhamaoui, Said & Dahmani, Mohamed, 2024. "Innovative design and field performance evaluation of a desert-adapted PV module for enhanced solar energy harvesting and reliability in harsh arid environments," Applied Energy, Elsevier, vol. 366(C).
    19. Chen, Wei & He, Zhicheng & Zhao, Jing & Mo, Jiliang & Ouyang, Huajiang, 2024. "Hybrid triboelectric-piezoelectric energy harvesting via a bistable swing-impact structure with a tuneable potential barrier and frequency-up conversion effects," Applied Energy, Elsevier, vol. 375(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jian-Xu & Su, Wen-Bin & Li, Ji-Chao & Wang, Chun-Ming, 2022. "A rotational piezoelectric energy harvester based on trapezoid beam: Simulation and experiment," Renewable Energy, Elsevier, vol. 184(C), pages 619-626.
    2. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    3. Wang, Chen & Chai, Hongfei & Li, Gaolei & Wang, Wei & Tian, Ruilan & Wen, Gui-Lin & Wang, Chun H. & Lai, Siu-Kai, 2024. "Boosting biomechanical and wave energy harvesting efficiency through a novel triple hybridization of piezoelectric, electromagnetic, and triboelectric generators," Applied Energy, Elsevier, vol. 374(C).
    4. He, Lipeng & Liu, Renwen & Liu, Xuejin & Zhang, Zheng & Zhang, Limin & Cheng, Guangming, 2023. "A novel piezoelectric wave energy harvester based on cylindrical-conical buoy structure and magnetic coupling," Renewable Energy, Elsevier, vol. 210(C), pages 397-407.
    5. Liu, Renwen & He, Lipeng & Yang, Bowen & Li, Xiaotao & Zhang, Limin & Zhong, Feng, 2024. "A low-frequency piezoelectric wave energy harvester based on segmental beam and double magnetic excitation," Energy, Elsevier, vol. 302(C).
    6. Fu, Jiyang & Zeng, Xianming & Wu, Nan & Wu, Jiurong & He, Yuncheng & Xiong, Chao & Dai, Xiaolong & Jin, Peichen & Lai, Minyi, 2024. "Design, modeling and experiments of bistable piezoelectric energy harvester with self-decreasing potential energy barrier effect," Energy, Elsevier, vol. 300(C).
    7. Shi, Ge & Sun, Qichao & Xia, Yinshui & Jia, Shengyao & Pan, Jiaheng & Li, Qing & Wang, Xiudeng & Xia, Huakang & Wang, Binrui & Sun, Yanwei, 2024. "An omnidirectional low-frequency wave vibration energy harvester with complementary advantages of pendulum and gyroscope structures," Energy, Elsevier, vol. 305(C).
    8. Sun, Ruqi & Ma, He & Zhou, Shengxi & Li, Zhongjie & Cheng, Li, 2024. "A direction-adaptive ultra-low frequency energy harvester with an aligning turntable," Energy, Elsevier, vol. 311(C).
    9. Zhu, Hongjun & Tang, Tao & Zhou, Tongming & Cai, Mingjin & Gaidai, Oleg & Wang, Junlei, 2021. "High performance energy harvesting from flow-induced vibrations in trapezoidal oscillators," Energy, Elsevier, vol. 236(C).
    10. Min, Zhaowei & Du, Xuteng & Zhang, Xiaofan & Wu, Wentao & Shan, Xiaobiao & Xie, Tao, 2024. "Picking up railway track vibration energy using a novel doughnut-shaped piezoelectric energy harvester," Energy, Elsevier, vol. 310(C).
    11. Azam, Ali & Ahmed, Ammar & Yi, Minyi & Zhang, Zutao & Zhang, Zeqiang & Aslam, Touqeer & Mugheri, Shoukat Ali & Abdelrahman, Mansour & Ali, Asif & Qi, Lingfei, 2024. "Wave energy evolution: Knowledge structure, advancements, challenges and future opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    12. Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
    13. Du, Xiaozhen & Chen, Haixiang & Li, Chicheng & Li, Zihao & Wang, Wenxiu & Guo, Dongxing & Yu, Hong & Wang, Junlei & Tang, Lihua, 2024. "Wake galloping piezoelectric-electromagnetic hybrid ocean wave energy harvesting with oscillating water column," Applied Energy, Elsevier, vol. 353(PA).
    14. Li, Zhongjie & Zhao, Li & Wang, Junlei & Yang, Zhengbao & Peng, Yan & Xie, Shaorong & Ding, Jiheng, 2023. "Piezoelectric energy harvesting from extremely low-frequency vibrations via gravity induced self-excited resonance," Renewable Energy, Elsevier, vol. 204(C), pages 546-555.
    15. Du, Fei & Wang, Nengyong & Ma, Tianbing & Shi, Rui & Yin, Liming & Li, Changpeng, 2024. "Design and experimental study of magnetically excited variable cross section bending beam piezoelectric energy harvester," Applied Energy, Elsevier, vol. 370(C).
    16. Dang, Shuai & Hou, Chengwei & Shan, Xiaobiao & Sui, Guangdong & Zhang, Xiaofan, 2024. "A novel T-shaped beam bistable piezoelectric energy harvester with a moving magnet," Energy, Elsevier, vol. 300(C).
    17. Areeba Naqvi & Ahsan Ali & Wael A. Altabey & Sallam A. Kouritem, 2022. "Energy Harvesting from Fluid Flow Using Piezoelectric Materials: A Review," Energies, MDPI, vol. 15(19), pages 1-35, October.
    18. Zhao, Lin-Chuan & Zou, Hong-Xiang & Zhao, Ying-Jie & Wu, Zhi-Yuan & Liu, Feng-Rui & Wei, Ke-Xiang & Zhang, Wen-Ming, 2022. "Hybrid energy harvesting for self-powered rotor condition monitoring using maximal utilization strategy in structural space and operation process," Applied Energy, Elsevier, vol. 314(C).
    19. Chen, Shao-En & Pan, Fu-Ting & Yang, Ray-Yeng & Wu, Chia-Che, 2023. "A multi-physics system integration and modeling method for piezoelectric wave energy harvester," Applied Energy, Elsevier, vol. 349(C).
    20. Kim, Ki Jong & Kim, Junyoung & Kim, Daegyoum, 2023. "Slosh-induced piezoelectric energy harvesting in a liquid tank," Renewable Energy, Elsevier, vol. 206(C), pages 409-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224032304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.