IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123011412.html
   My bibliography  Save this article

A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries

Author

Listed:
  • Kong, Weihua
  • He, Liujin
  • Hao, Daning
  • Wu, Xiaoping
  • Xiao, Luo
  • Zhang, Zutao
  • Xu, Yongsheng
  • Azam, Ali

Abstract

This paper proposes a nodding-duck wave energy harvester with coaxial contra-rotating power take-off based on the ultra-low frequency synergistic principle to solve the self-powered problems in intelligent fisheries. The design and working principle of nodding-duck wave energy harvester are described in detail, and the coaxial contra-rotating disengagement-engagement coupling model of nodding-duck wave energy harvester is established based on the ultra-low frequency synergistic principle. A dry bench test, charging test and water flume test were performed to evaluate the performance of the nodding-duck wave energy harvester. Dry bench experimental results show that the integrated disengagement ratio of the device can be increased by increasing the excitation frequency and amplitude and can achieve a maximum voltage output of 24.1 V and average power of 210.5 mW by sinusoidal wave excitation of 1 Hz and swing angle of 5π/12. The water flume experiment is used as supportive evidence to demonstrate the power supply performance of the device. Different analyses proved that the device had the potential to supply energy effectively for intelligent fishery sensors.

Suggested Citation

  • Kong, Weihua & He, Liujin & Hao, Daning & Wu, Xiaoping & Xiao, Luo & Zhang, Zutao & Xu, Yongsheng & Azam, Ali, 2023. "A wave energy harvester based on an ultra-low frequency synergistic PTO for intelligent fisheries," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011412
    DOI: 10.1016/j.renene.2023.119226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011412
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wan, Yong & Zheng, Chongwei & Li, Ligang & Dai, Yongshou & Esteban, M. Dolores & López-Gutiérrez, José-Santos & Qu, Xiaojun & Zhang, Xiaoyu, 2020. "Wave energy assessment related to wave energy convertors in the coastal waters of China," Energy, Elsevier, vol. 202(C).
    2. Li, Xiaofan & Chen, ChienAn & Li, Qiaofeng & Xu, Lin & Liang, Changwei & Ngo, Khai & Parker, Robert G. & Zuo, Lei, 2020. "A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification," Applied Energy, Elsevier, vol. 278(C).
    3. Pan, Hongye & Qi, Lingfei & Zhang, Zutao & Yan, Jinyue, 2021. "Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review," Applied Energy, Elsevier, vol. 286(C).
    4. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    5. Viet, N.V. & Xie, X.D. & Liew, K.M. & Banthia, N. & Wang, Q., 2016. "Energy harvesting from ocean waves by a floating energy harvester," Energy, Elsevier, vol. 112(C), pages 1219-1226.
    6. Markel Penalba & John V. Ringwood, 2016. "A Review of Wave-to-Wire Models for Wave Energy Converters," Energies, MDPI, vol. 9(7), pages 1-45, June.
    7. Zheng, Chong-wei, 2021. "Global oceanic wave energy resource dataset—with the Maritime Silk Road as a case study," Renewable Energy, Elsevier, vol. 169(C), pages 843-854.
    8. Tongphong, Watchara & Kim, Byung-Ha & Kim, In-Cheol & Lee, Young-Ho, 2021. "A study on the design and performance of ModuleRaft wave energy converter," Renewable Energy, Elsevier, vol. 163(C), pages 649-673.
    9. Arthur Pecher & Jens Peter Kofoed & Tommy Larsen, 2012. "Design Specifications for the Hanstholm WEPTOS Wave Energy Converter," Energies, MDPI, vol. 5(4), pages 1-17, April.
    10. Zou, Hong-Xiang & Li, Meng & Zhao, Lin-Chuan & Gao, Qiu-Hua & Wei, Ke-Xiang & Zuo, Lei & Qian, Feng & Zhang, Wen-Ming, 2021. "A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting," Energy, Elsevier, vol. 217(C).
    11. Li, Xiaofan & Liang, Changwei & Chen, Chien-An & Xiong, Qiuchi & Parker, Robert G. & Zuo, Lei, 2020. "Optimum power analysis of a self-reactive wave energy point absorber with mechanically-driven power take-offs," Energy, Elsevier, vol. 195(C).
    12. Qi, Lingfei & Li, Hai & Wu, Xiaoping & Zhang, Zutao & Duan, Wenjun & Yi, Minyi, 2021. "A hybrid piezoelectric-electromagnetic wave energy harvester based on capsule structure for self-powered applications in sea-crossing bridges," Renewable Energy, Elsevier, vol. 178(C), pages 1223-1235.
    13. Viet, N.V. & Wang, Q., 2018. "Ocean wave energy pitching harvester with a frequency tuning capability," Energy, Elsevier, vol. 162(C), pages 603-617.
    14. Yar, Adem & Kınas, Zeynep & Karabiber, Abdulkerim & Ozen, Abdurrahman & Okbaz, Abdulkerim & Ozel, Faruk, 2021. "Enhanced performance of triboelectric nanogenerator based on polyamide-silver antimony sulfide nanofibers for energy harvesting," Renewable Energy, Elsevier, vol. 179(C), pages 1781-1792.
    15. Ahn, Seongho & Neary, Vincent S. & Allahdadi, Mohammad Nabi & He, Ruoying, 2021. "Nearshore wave energy resource characterization along the East Coast of the United States," Renewable Energy, Elsevier, vol. 172(C), pages 1212-1224.
    16. Wu, Jinming & Yao, Yingxue & Zhou, Liang & Chen, Ni & Yu, Huifeng & Li, Wei & Göteman, Malin, 2017. "Performance analysis of solo Duck wave energy converter arrays under motion constraints," Energy, Elsevier, vol. 139(C), pages 155-169.
    17. Cuttler, Michael V.W. & Hansen, Jeff E. & Lowe, Ryan J., 2020. "Seasonal and interannual variability of the wave climate at a wave energy hotspot off the southwestern coast of Australia," Renewable Energy, Elsevier, vol. 146(C), pages 2337-2350.
    18. Hao, Daning & Qi, Lingfei & Tairab, Alaeldin M. & Ahmed, Ammar & Azam, Ali & Luo, Dabing & Pan, Yajia & Zhang, Zutao & Yan, Jinyue, 2022. "Solar energy harvesting technologies for PV self-powered applications: A comprehensive review," Renewable Energy, Elsevier, vol. 188(C), pages 678-697.
    19. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    20. Sun, Rujie & Li, Qinyu & Yao, Jianfei & Scarpa, Fabrizio & Rossiter, Jonathan, 2020. "Tunable, multi-modal, and multi-directional vibration energy harvester based on three-dimensional architected metastructures," Applied Energy, Elsevier, vol. 264(C).
    21. Qian, Feng & Liu, Mingyi & Huang, Jianuo & Zhang, Jiajun & Jung, Hyunjun & Deng, Zhiqun Daniel & Hajj, Muhammad R. & Zuo, Lei, 2022. "Bio-inspired bistable piezoelectric energy harvester for powering animal telemetry tags: Conceptual design and preliminary experimental validation," Renewable Energy, Elsevier, vol. 187(C), pages 34-43.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zihe & Zhang, Xiantao & Liu, Lei & Tian, Xinliang & Li, Xin, 2024. "Mechanical property identification and performance evaluation of a power take-off combined with a mechanical motion rectifier and a magnetic bistable device," Applied Energy, Elsevier, vol. 353(PA).
    2. Fan, Chengliang & Li, Hai & Zhang, Zutao & Pan, Yajia & Wu, Xiaoping & Ahmed, Ammar, 2023. "An H-shaped coupler energy harvester for application in heavy railways," Energy, Elsevier, vol. 270(C).
    3. Qi, Lingfei & Song, Juhuang & Wang, Yuan & Yi, Minyi & Zhang, Zutao & Yan, Jinyue, 2024. "Mechanical motion rectification-based electromagnetic vibration energy harvesting technology: A review," Energy, Elsevier, vol. 289(C).
    4. Chen, Shuo & Jiang, Boxi & Li, Xiaofan & Huang, Jianuo & Wu, Xian & Xiong, Qiuchi & Parker, Robert G. & Zuo, Lei, 2022. "Design, dynamic modeling and wave basin verification of a Hybrid Wave–Current Energy Converter," Applied Energy, Elsevier, vol. 321(C).
    5. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    6. Fang, Zheng & Tan, Xing & Liu, Genshuo & Zhou, Zijie & Pan, Yajia & Ahmed, Ammar & Zhang, Zutao, 2022. "A novel vibration energy harvesting system integrated with an inertial pendulum for zero-energy sensor applications in freight trains," Applied Energy, Elsevier, vol. 318(C).
    7. Zhang, Tingsheng & Wu, Xiaoping & Pan, Yajia & Luo, Dabing & Xu, Yongsheng & Zhang, Zutao & Yuan, Yanping & Yan, Jinyue, 2022. "Vibration energy harvesting system based on track energy-recycling technology for heavy-duty freight railroads," Applied Energy, Elsevier, vol. 323(C).
    8. Li, Zhongjie & Jiang, Xiaomeng & Yin, Peilun & Tang, Lihua & Wu, Hao & Peng, Yan & Luo, Jun & Xie, Shaorong & Pu, Huayan & Wang, Daifeng, 2021. "Towards self-powered technique in underwater robots via a high-efficiency electromagnetic transducer with circularly abrupt magnetic flux density change," Applied Energy, Elsevier, vol. 302(C).
    9. Kamranzad, Bahareh & Lin, Pengzhi & Iglesias, Gregorio, 2021. "Combining methodologies on the impact of inter and intra-annual variation of wave energy on selection of suitable location and technology," Renewable Energy, Elsevier, vol. 172(C), pages 697-713.
    10. Li, Yunfei & Ma, Xin & Tang, Tianyi & Zha, Fusheng & Chen, Zhaohui & Liu, Huicong & Sun, Lining, 2022. "High-efficient built-in wave energy harvesting technology: From laboratory to open ocean test," Applied Energy, Elsevier, vol. 322(C).
    11. Wang, Tao & Lv, Haobin & Wang, Xin, 2024. "Development of an electromagnetic energy harvester for ultra-low frequency pitch vibration of unmanned marine devices," Applied Energy, Elsevier, vol. 353(PA).
    12. Qi, Lingfei & Li, Hai & Wu, Xiaoping & Zhang, Zutao & Duan, Wenjun & Yi, Minyi, 2021. "A hybrid piezoelectric-electromagnetic wave energy harvester based on capsule structure for self-powered applications in sea-crossing bridges," Renewable Energy, Elsevier, vol. 178(C), pages 1223-1235.
    13. Nick Rigogiannis & Ioannis Bogatsis & Christos Pechlivanis & Anastasios Kyritsis & Nick Papanikolaou, 2023. "Moving towards Greener Road Transportation: A Review," Clean Technol., MDPI, vol. 5(2), pages 1-25, June.
    14. Li, Zhongjie & Zhao, Li & Wang, Junlei & Yang, Zhengbao & Peng, Yan & Xie, Shaorong & Ding, Jiheng, 2023. "Piezoelectric energy harvesting from extremely low-frequency vibrations via gravity induced self-excited resonance," Renewable Energy, Elsevier, vol. 204(C), pages 546-555.
    15. Cai, Qinlin & Zhu, Songye, 2022. "The nexus between vibration-based energy harvesting and structural vibration control: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Bartosz Drzymała & Jakub Gęca & Marcin Bocheński, 2023. "Kinetic Vibration Energy Harvester Based on Electromechanical Converter with Power Electronics Active Rectifier," Energies, MDPI, vol. 16(20), pages 1-12, October.
    17. Yazdi, Hossein & Ghafari, Hamid Reza & Ghassemi, Hassan & He, Guanghua & Karimirad, Madjid, 2023. "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform," Energy, Elsevier, vol. 278(PA).
    18. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    19. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    20. Wen, Binrong & Jiang, Zhihao & Li, Zhanwei & Peng, Zhike & Dong, Xingjian & Tian, Xinliang, 2022. "On the aerodynamic loading effect of a model Spar-type floating wind turbine: An experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 306-319.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.