IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923013867.html
   My bibliography  Save this article

Effects of piezoelectric energy harvesting from a morphing flapping tail on its performance

Author

Listed:
  • Alqaleiby, Hossam
  • Ayyad, Mahmoud
  • Hajj, Muhammad R.
  • Ragab, Saad A.
  • Zuo, Lei

Abstract

Monitoring fish migration, which can extend over distances of thousands of kilometers, via fish tags is important to maintain healthy fish stocks and preserve biodiversity. One constraint of current fish tags is the limited power of their batteries. Attaching a piezoelectric element to an oscillating part of the fish body has been proposed to develop self-powered tags. To determine the functionality and potential of this technology, we present an analysis showing variations of the generated voltage with specific aspects of the tail’s response. We also perform numerical simulations to validate the analysis and determine the effects of attaching a piezoelectric element on performance metrics including thrust generation, propulsive efficiency, and harvested electric power. The tail with the attached piezoelectric element is modeled as a unimorph beam moving at a constant forward speed and excited by sinusoidal pitching at its root. The hydrodynamic loads are calculated using three-dimensional unsteady vortex lattice method. These loads are coupled with the equation of motion, which is solved using the finite element method. The implicit finite different scheme is used to discretize the time-dependent generated voltage equation. The analysis shows that the harvested electric power depends on the slope of the trailing edge, a result that is validated with the numerical simulations. The numerical simulations show that, depending on the excitation frequency, attaching a piezoelectric element can increase or decrease the thrust force. The balance of required hydrodynamic power, generated propulsive power and harvested electrical power shows that, depending on the excitation frequency, relatively high levels of harvested power can be harvested without a high adverse impact on the hydrodynamic or propulsive power. For a specified frequency of oscillations, the approach and results can be used to identify design parameters where harvested electrical power by a piezoelectric element will have a minimal adverse impact on the hydrodynamic or propulsive power of a swimming fish.

Suggested Citation

  • Alqaleiby, Hossam & Ayyad, Mahmoud & Hajj, Muhammad R. & Ragab, Saad A. & Zuo, Lei, 2024. "Effects of piezoelectric energy harvesting from a morphing flapping tail on its performance," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013867
    DOI: 10.1016/j.apenergy.2023.122022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cha, Youngsu & Chae, Woojin & Kim, Hubert & Walcott, Horace & Peterson, Sean D. & Porfiri, Maurizio, 2016. "Energy harvesting from a piezoelectric biomimetic fish tail," Renewable Energy, Elsevier, vol. 86(C), pages 449-458.
    2. Barbara A. Block & Steven L. H. Teo & Andreas Walli & Andre Boustany & Michael J. W. Stokesbury & Charles J. Farwell & Kevin C. Weng & Heidi Dewar & Thomas D. Williams, 2005. "Electronic tagging and population structure of Atlantic bluefin tuna," Nature, Nature, vol. 434(7037), pages 1121-1127, April.
    3. Sun, Weipeng & Zhao, Daoli & Tan, Ting & Yan, Zhimiao & Guo, Pengcheng & Luo, Xingqi, 2019. "Low velocity water flow energy harvesting using vortex induced vibration and galloping," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    5. Tian, Haigang & Shan, Xiaobiao & Li, Xia & Wang, Junlei, 2023. "Enhanced airfoil-based flutter piezoelectric energy harvester via coupling magnetic force," Applied Energy, Elsevier, vol. 340(C).
    6. Salazar, R. & Abdelkefi, A., 2020. "Nonlinear analysis of a piezoelectric energy harvester in body undulatory caudal fin aquatic unmanned vehicles," Applied Energy, Elsevier, vol. 263(C).
    7. Mujtaba, A. & Latif, U. & Uddin, E. & Younis, M.Y. & Sajid, M. & Ali, Z. & Abdelkefi, A., 2021. "Hydrodynamic energy harvesting analysis of two piezoelectric tandem flags under influence of upstream body’s wakes," Applied Energy, Elsevier, vol. 282(PA).
    8. Gibus, David & Gasnier, Pierre & Morel, Adrien & Formosa, Fabien & Charleux, Ludovic & Boisseau, Sébastien & Pillonnet, Gaël & Berlitz, Carlos Augusto & Quelen, Anthony & Badel, Adrien, 2020. "Strongly coupled piezoelectric cantilevers for broadband vibration energy harvesting," Applied Energy, Elsevier, vol. 277(C).
    9. Qian, Feng & Liu, Mingyi & Huang, Jianuo & Zhang, Jiajun & Jung, Hyunjun & Deng, Zhiqun Daniel & Hajj, Muhammad R. & Zuo, Lei, 2022. "Bio-inspired bistable piezoelectric energy harvester for powering animal telemetry tags: Conceptual design and preliminary experimental validation," Renewable Energy, Elsevier, vol. 187(C), pages 34-43.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Ki Jong & Kim, Junyoung & Kim, Daegyoum, 2023. "Slosh-induced piezoelectric energy harvesting in a liquid tank," Renewable Energy, Elsevier, vol. 206(C), pages 409-417.
    2. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    3. Qian, Feng & Liu, Mingyi & Huang, Jianuo & Zhang, Jiajun & Jung, Hyunjun & Deng, Zhiqun Daniel & Hajj, Muhammad R. & Zuo, Lei, 2022. "Bio-inspired bistable piezoelectric energy harvester for powering animal telemetry tags: Conceptual design and preliminary experimental validation," Renewable Energy, Elsevier, vol. 187(C), pages 34-43.
    4. Li, Huaijun & Bernitsas, Christopher C. & Congpuong, Nipit & Bernitsas, Michael M. & Sun, Hai, 2024. "Experimental investigation on synergistic flow-induced oscillation of three rough tandem-cylinders in hydrokinetic energy conversion," Applied Energy, Elsevier, vol. 359(C).
    5. Zou, Hong-Xiang & Li, Meng & Zhao, Lin-Chuan & Gao, Qiu-Hua & Wei, Ke-Xiang & Zuo, Lei & Qian, Feng & Zhang, Wen-Ming, 2021. "A magnetically coupled bistable piezoelectric harvester for underwater energy harvesting," Energy, Elsevier, vol. 217(C).
    6. Shan, Xiaobiao & Sui, Guangdong & Tian, Haigang & Min, Zhaowei & Feng, Ju & Xie, Tao, 2022. "Numerical analysis and experiments of an underwater magnetic nonlinear energy harvester based on vortex-induced vibration," Energy, Elsevier, vol. 241(C).
    7. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    8. Bai, Xu & Sun, Meng & Zhang, Wen & Wang, Jialu, 2024. "A novel elli-circ oscillator applied in VIVACE converter and its vibration characteristics and energy harvesting efficiency," Energy, Elsevier, vol. 296(C).
    9. Latif, Usman & Younis, M. Yamin & Idrees, Saad & Uddin, Emad & Abdelkefi, Abdessattar & Munir, Adnan & Zhao, Ming, 2023. "Synergistic analysis of wake effect of two cylinders on energy harvesting characteristics of piezoelectric flag," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Clive N. Trueman & Iraide Artetxe-Arrate & Lisa A. Kerr & Andrew J. S. Meijers & Jay R. Rooker & Rahul Sivankutty & Haritz Arrizabalaga & Antonio Belmonte & Simeon Deguara & Nicolas Goñi & Enrique Rod, 2023. "Thermal sensitivity of field metabolic rate predicts differential futures for bluefin tuna juveniles across the Atlantic Ocean," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Liu, Zhen & Qu, Hengliang & Song, Xinyu & Chen, Zhengshou & Ni, Heqiang, 2023. "Energy-harvesting performance of tandem coupled-pitching hydrofoils under the semi-activated mode: An experimental study," Energy, Elsevier, vol. 279(C).
    12. Liu, Qi & Qin, Weiyang & Zhou, Zhiyong & Shang, Mengjie & Zhou, Honglei, 2023. "Harvesting low-speed wind energy by bistable snap-through and amplified inertial force," Energy, Elsevier, vol. 284(C).
    13. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    14. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Tan, Ting & Zhang, Wenming & Liao, Wei-Hsin, 2021. "Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations," Applied Energy, Elsevier, vol. 302(C).
    15. Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
    16. Michele Bonnin & Fabio L. Traversa & Fabrizio Bonani, 2022. "An Impedance Matching Solution to Increase the Harvested Power and Efficiency of Nonlinear Piezoelectric Energy Harvesters," Energies, MDPI, vol. 15(8), pages 1-17, April.
    17. Tamimi, V. & Esfehani, M.J. & Zeinoddini, M. & Seif, M.S. & Poncet, S., 2023. "Hydroelastic response and electromagnetic energy harvesting of square oscillators: Effects of free and fixed square wakes," Energy, Elsevier, vol. 263(PE).
    18. Councill, Elizabeth L. & Die, David J., 2015. "The relative importance of subpopulation connectivity and the age distribution of mortality in exploited marine fish populations," Ecological Modelling, Elsevier, vol. 312(C), pages 247-255.
    19. Rashki, M.R. & Hejazi, K. & Tamimi, V. & Zeinoddini, M. & Bagherpour, P. & Aalami Harandi, M.M., 2023. "Electromagnetic energy harvesting from 2DOF-VIV of circular oscillators: Impacts of soft marine fouling," Energy, Elsevier, vol. 282(C).
    20. Peng, Yan & Xu, Zhibing & Wang, Min & Li, Zhongjie & Peng, Jinlin & Luo, Jun & Xie, Shaorong & Pu, Huayan & Yang, Zhengbao, 2021. "Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators," Renewable Energy, Elsevier, vol. 172(C), pages 551-563.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923013867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.