Hydrogen production from simple alkanes and oxygenated hydrocarbons over ceria–zirconia supported catalysts: Review
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2013.12.040
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Roh, Hyun-Seog & Eum, Ic-Hwan & Jeong, Dae-Woon, 2012. "Low temperature steam reforming of methane over Ni–Ce(1−x)Zr(x)O2 catalysts under severe conditions," Renewable Energy, Elsevier, vol. 42(C), pages 212-216.
- Dave, Chirag D. & Pant, K.K., 2011. "Renewable hydrogen generation by steam reforming of glycerol over zirconia promoted ceria supported catalyst," Renewable Energy, Elsevier, vol. 36(11), pages 3195-3202.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ekaterina Matus & Olga Sukhova & Ilyas Ismagilov & Mikhail Kerzhentsev & Olga Stonkus & Zinfer Ismagilov, 2021. "Hydrogen Production through Autothermal Reforming of Ethanol: Enhancement of Ni Catalyst Performance via Promotion," Energies, MDPI, vol. 14(16), pages 1-16, August.
- Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
- Baruah, Renika & Dixit, Marm & Basarkar, Pratik & Parikh, Dhrupad & Bhargav, Atul, 2015. "Advances in ethanol autothermal reforming," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1345-1353.
- Chen, Wei-Hsin & Shen, Chun-Ting & Lin, Bo-Jhih & Liu, Shih-Chun, 2015. "Hydrogen production from methanol partial oxidation over Pt/Al2O3 catalyst with low Pt content," Energy, Elsevier, vol. 88(C), pages 399-407.
- Hou, Tengfei & Zhang, Shaoyin & Chen, Yongdong & Wang, Dazhi & Cai, Weijie, 2015. "Hydrogen production from ethanol reforming: Catalysts and reaction mechanism," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 132-148.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shim, Jae-Oh & Jeong, Dae-Woon & Jang, Won-Jun & Jeon, Kyung-Won & Jeon, Byong-Hun & Cho, Seung Yeon & Roh, Hyun-Seog & Na, Jeong-Geol & Ko, Chang Hyun & Oh, You-Kwan & Han, Sang Sub, 2014. "Deoxygenation of oleic acid over Ce(1–x)Zr(x)O2 catalysts in hydrogen environment," Renewable Energy, Elsevier, vol. 65(C), pages 36-40.
- Jang, Won-Jun & Jeong, Dae-Woon & Shim, Jae-Oh & Kim, Hak-Min & Han, Won-Bi & Bae, Jong Wook & Roh, Hyun-Seog, 2015. "Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases," Renewable Energy, Elsevier, vol. 79(C), pages 91-95.
- LeValley, Trevor L. & Richard, Anthony R. & Fan, Maohong, 2015. "Development of catalysts for hydrogen production through the integration of steam reforming of methane and high temperature water gas shift," Energy, Elsevier, vol. 90(P1), pages 748-758.
- Abel Rodrigues & João Carlos Bordado & Rui Galhano dos Santos, 2017. "Upgrading the Glycerol from Biodiesel Production as a Source of Energy Carriers and Chemicals—A Technological Review for Three Chemical Pathways," Energies, MDPI, vol. 10(11), pages 1-36, November.
- Jalali, Ramin & Rezaei, Mehran & Nematollahi, Behzad & Baghalha, Morteza, 2020. "Preparation of Ni/MeAl2O4-MgAl2O4 (Me=Fe, Co, Ni, Cu, Zn, Mg) nanocatalysts for the syngas production via combined dry reforming and partial oxidation of methane," Renewable Energy, Elsevier, vol. 149(C), pages 1053-1067.
- Bian, Zhoufeng & Deng, Shaobi & Sun, Zhenkun & Ge, Tianshu & Jiang, Bo & Zhong, Wenqi, 2022. "Multi-core@Shell catalyst derived from LDH@SiO2 for low- temperature dry reforming of methane," Renewable Energy, Elsevier, vol. 200(C), pages 1362-1370.
- Jeong, Dae-Woon & Jang, Won-Jun & Shim, Jae-Oh & Han, Won-Bi & Roh, Hyun-Seog & Jung, Un Ho & Yoon, Wang Lai, 2014. "Low-temperature water–gas shift reaction over supported Cu catalysts," Renewable Energy, Elsevier, vol. 65(C), pages 102-107.
- Pravakar Mohanty & Kamal K. Pant & Ritesh Mittal, 2015. "Hydrogen generation from biomass materials: challenges and opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(2), pages 139-155, March.
- Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Jeong, Dae-Woon & Jang, Won-Jun & Shim, Jae-Oh & Han, Won-Bi & Kim, Hak-Min & Lee, Yeol-Lim & Bae, Jong Wook & Roh, Hyun-Seog, 2015. "Optimization of a highly active nano-sized Pt/CeO2 catalyst via Ce(OH)CO3 for the water-gas shift reaction," Renewable Energy, Elsevier, vol. 79(C), pages 78-84.
- Nicolas Abatzoglou & Clémence Fauteux-Lefebvre, 2016. "Review of catalytic syngas production through steam or dry reforming and partial oxidation of studied liquid compounds," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 169-187, March.
- Hajjaji, Noureddine & Chahbani, Amna & Khila, Zouhour & Pons, Marie-Noëlle, 2014. "A comprehensive energy–exergy-based assessment and parametric study of a hydrogen production process using steam glycerol reforming," Energy, Elsevier, vol. 64(C), pages 473-483.
- Díaz, Gisel Chenard & Tapanes, Neyda de la C. Om & Câmara, Leôncio Diógenes T. & Aranda, Donato A.G., 2014. "Glycerol conversion in the experimental study of catalytic hydrolysis of triglycerides for fatty acids production using Ni or Pd on Al2O3 or SiO2," Renewable Energy, Elsevier, vol. 64(C), pages 113-122.
- Silva, Joel M. & Soria, M.A. & Madeira, Luis M., 2015. "Challenges and strategies for optimization of glycerol steam reforming process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1187-1213.
- Dou, Binlin & Song, Yongchen & Wang, Chao & Chen, Haisheng & Xu, Yujie, 2014. "Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 950-960.
- Hajjaji, Noureddine & Baccar, Ines & Pons, Marie-Noëlle, 2014. "Energy and exergy analysis as tools for optimization of hydrogen production by glycerol autothermal reforming," Renewable Energy, Elsevier, vol. 71(C), pages 368-380.
- Palma, Vincenzo & Ruocco, Concetta & Ricca, Antonio, 2018. "Oxidative steam reforming of ethanol in a fluidized bed over CeO2-SiO2 supported catalysts: effect of catalytic formulation," Renewable Energy, Elsevier, vol. 125(C), pages 356-364.
More about this item
Keywords
Hydrogen; Ceria–zirconia; Steam reforming; Autothermal reforming; Partial oxidation; Dry reforming;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:32:y:2014:i:c:p:777-796. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.