Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-023-36646-2
Download full text from publisher
References listed on IDEAS
- Mengran Li & Erdem Irtem & Hugo-Pieter Iglesias van Montfort & Maryam Abdinejad & Thomas Burdyny, 2022. "Energy comparison of sequential and integrated CO2 capture and electrochemical conversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Mutch, Greg A. & Anderson, James A. & Vega-Maza, David, 2017. "Surface and bulk carbonate formation in calcium oxide during CO2 capture," Applied Energy, Elsevier, vol. 202(C), pages 365-376.
- Alexey Kurlov & Evgeniya B. Deeva & Paula M. Abdala & Dmitry Lebedev & Athanasia Tsoukalou & Aleix Comas-Vives & Alexey Fedorov & Christoph R. Müller, 2020. "Exploiting two-dimensional morphology of molybdenum oxycarbide to enable efficient catalytic dry reforming of methane," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
- Yan Tang & Chithra Asokan & Mingjie Xu & George W. Graham & Xiaoqing Pan & Phillip Christopher & Jun Li & Philippe Sautet, 2019. "Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wu, Xiaomei & Mao, Yuanhao & Fan, Huifeng & Sultan, Sayd & Yu, Yunsong & Zhang, Zaoxiao, 2023. "Investigation on the performance of EDA-based blended solvents for electrochemically mediated CO2 capture," Applied Energy, Elsevier, vol. 349(C).
- Xingyue Ma & Shuxuan Luo & Yunhui Hua & Seshadri Seetharaman & Xiaobo Zhu & Jingwei Hou & Lei Zhang & Wanlin Wang & Yongqi Sun, 2024. "An alumina phase induced composite transition shuttle to stabilize carbon capture cycles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Lv, Zongze & Du, Hong & Xu, Shaojun & Deng, Tao & Ruan, Jiaqi & Qin, Changlei, 2024. "Techno-economic analysis on CO2 mitigation by integrated carbon capture and methanation," Applied Energy, Elsevier, vol. 355(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cong-Xiao Wang & Hao-Xin Liu & Hao Gu & Jin-Ying Li & Xiao-Meng Lai & Xin-Pu Fu & Wei-Wei Wang & Qiang Fu & Feng Ryan Wang & Chao Ma & Chun-Jiang Jia, 2024. "Hydroxylated TiO2-induced high-density Ni clusters for breaking the activity-selectivity trade-off of CO2 hydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Marti Checa & Addis S. Fuhr & Changhyo Sun & Rama Vasudevan & Maxim Ziatdinov & Ilia Ivanov & Seok Joon Yun & Kai Xiao & Alp Sehirlioglu & Yunseok Kim & Pankaj Sharma & Kyle P. Kelley & Neus Domingo &, 2023. "High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Bian, Zhoufeng & Deng, Shaobi & Sun, Zhenkun & Ge, Tianshu & Jiang, Bo & Zhong, Wenqi, 2022. "Multi-core@Shell catalyst derived from LDH@SiO2 for low- temperature dry reforming of methane," Renewable Energy, Elsevier, vol. 200(C), pages 1362-1370.
- Zheng Chen & Zhangyun Liu & Xin Xu, 2023. "Dynamic evolution of the active center driven by hemilabile coordination in Cu/CeO2 single-atom catalyst," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Lina Zhang & Shaolong Wan & Congcong Du & Qiang Wan & Hien Pham & Jiafei Zhao & Xingyu Ding & Diye Wei & Wei Zhao & Jiwei Li & Yanping Zheng & Hui Xie & Hua Zhang & Mingshu Chen & Kelvin H. L. Zhang &, 2024. "Generating active metal/oxide reverse interfaces through coordinated migration of single atoms," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
- Yurou Celine Xiao & Siyu Sonia Sun & Yong Zhao & Rui Kai Miao & Mengyang Fan & Geonhui Lee & Yuanjun Chen & Christine M. Gabardo & Yan Yu & Chenyue Qiu & Zunmin Guo & Xinyue Wang & Panagiotis Papangel, 2024. "Reactive capture of CO2 via amino acid," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
- Xingyue Ma & Shuxuan Luo & Yunhui Hua & Seshadri Seetharaman & Xiaobo Zhu & Jingwei Hou & Lei Zhang & Wanlin Wang & Yongqi Sun, 2024. "An alumina phase induced composite transition shuttle to stabilize carbon capture cycles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Cornelius A. Obasanjo & Guorui Gao & Jackson Crane & Viktoria Golovanova & F. Pelayo García de Arquer & Cao-Thang Dinh, 2023. "High-rate and selective conversion of CO2 from aqueous solutions to hydrocarbons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36646-2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.