IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3218-d1114973.html
   My bibliography  Save this article

Structured Catalysts for Non-Thermal Plasma-Assisted Ammonia Synthesis

Author

Listed:
  • Eugenio Meloni

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy)

  • Liberato Cafiero

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy)

  • Marco Martino

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy)

  • Vincenzo Palma

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy)

Abstract

Ammonia has been intensively studied as a clean, sustainable fuel source and an efficient energy storage medium due to its effectiveness as a hydrogen carrier molecule. However, the currently used Haber–Bosch process requires a large fossil fuel input, high temperatures and pressures, as well as a significant capital investment. These constraints prevent decentralized and small-scale ammonia production at the level of small farms and local communities. Non-thermal plasma (NTP) can promote ammonia synthesis in operating conditions in which, in a conventional process, a catalyst is generally not active. In this study, the production of NTP-assisted catalytic ammonia at milder temperatures and ambient pressure was investigated. Four different structured catalysts were prepared and tested using an experimental plant based on a dielectric barrier discharge (DBD) reactor. The effect of the gas hourly space velocity (GHSV) was investigated, as well as the effect of the N 2 /H 2 ratio on catalyst performance. The results evidenced that the best catalytic activity (about 4 mmol h −1 of produced NH 3 ) was obtained using the 10Ni/zeolite 13X sample with the lowest energy consumption, thus highlighting the feasibility of this innovative technology in this field.

Suggested Citation

  • Eugenio Meloni & Liberato Cafiero & Marco Martino & Vincenzo Palma, 2023. "Structured Catalysts for Non-Thermal Plasma-Assisted Ammonia Synthesis," Energies, MDPI, vol. 16(7), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3218-:d:1114973
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meloni, Eugenio & Martino, Marco & Palma, Vincenzo, 2022. "Microwave assisted steam reforming in a high efficiency catalytic reactor," Renewable Energy, Elsevier, vol. 197(C), pages 893-901.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Labanca, A.R.C. & Cunha, A.G. & Ribeiro, R.P. & Zucolotto, C.G. & Cevolani, M.B. & Schettino, M.A., 2022. "Technological solution for distributing vehicular hydrogen using dry plasma reforming of natural gas and biogas," Renewable Energy, Elsevier, vol. 201(P2), pages 11-21.
    2. Shir Reen Chia & Saifuddin Nomanbhay & Jassinnee Milano & Kit Wayne Chew & Chung-Hong Tan & Kuan Shiong Khoo, 2022. "Microwave-Absorbing Catalysts in Catalytic Reactions of Biofuel Production," Energies, MDPI, vol. 15(21), pages 1-26, October.
    3. Meloni, Eugenio & Saraceno, Emilia & Martino, Marco & Corrado, Antonio & Iervolino, Giuseppina & Palma, Vincenzo, 2023. "SiC-based structured catalysts for a high-efficiency electrified dry reforming of methane," Renewable Energy, Elsevier, vol. 211(C), pages 336-346.
    4. Iulianelli, Adolfo & Brunetti, Adele & Pino, Lidia & Italiano, Cristina & Ferrante, Giovanni Drago & Gensini, Mario & Vita, Antonio, 2023. "An integrated two stages inorganic membrane-based system to generate and recover decarbonized H2: An experimental study and performance indexes analysis," Renewable Energy, Elsevier, vol. 210(C), pages 472-485.
    5. Hanmin Yang & Ilman Nuran Zaini & Ruming Pan & Yanghao Jin & Yazhe Wang & Lengwan Li & José Juan Bolívar Caballero & Ziyi Shi & Yaprak Subasi & Anissa Nurdiawati & Shule Wang & Yazhou Shen & Tianxiang, 2024. "Distributed electrified heating for efficient hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3218-:d:1114973. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.