IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp1041-1048.html
   My bibliography  Save this article

System dynamics modelling to assess the impact of renewable energy systems and energy efficiency on the performance of the energy sector

Author

Listed:
  • Laimon, Mohamd
  • Mai, Thanh
  • Goh, Steven
  • Yusaf, Talal

Abstract

Sustainable development of the inherently complex nature of the energy sector requires a comprehensive understanding of its components and their dynamic interactions. In this study, we employ a system dynamics approach to examine the impact of renewable energy systems and energy efficiency on the performance of the energy sector, and apply this, as a case study example, to the Australian energy sector. Our results show that improving only 1% of energy efficiency would result in 101k/331k GWh energy productivity (5% and 14% of total energy consumption) and reduce domestic CO2 emissions by 15.3/50 Mt CO2-e (4% and 10% of total domestic emissions) by 2030/2050. Switching to renewable energy for transportation and therefore saving 5% per year of current oil consumption may decrease dependency on oil to half by 2030 and to zero by 2050, and reduce domestic CO2 emissions by 74.1/198 Mt CO2-e (18% and 41% of total domestic emissions). Switching to renewable electricity by 3% annually may lead to 60.8/129 Mt CO2-e reduction in domestic CO2 emissions (15% and 27% of total domestic emissions) by 2030/2050. Electrification of other sectors, mainly the manufacturing sector, increasing the use of renewable energy by 4% annually, may lead to 43.3/106 Mt CO2-e reduction in domestic CO2 emissions (11% and 22% of total domestic emissions) by 2030/2050. Improving energy efficiency, switching to renewable energy for transportation, switching to renewable electricity, electrification of sectors that do not currently run on electricity with the use of renewable energy could achieve zero domestic CO2 emissions by 2050 while energy consumption stays almost stable (0.5%/year). This process may be accelerated by improving energy efficiency by more than 1%.

Suggested Citation

  • Laimon, Mohamd & Mai, Thanh & Goh, Steven & Yusaf, Talal, 2022. "System dynamics modelling to assess the impact of renewable energy systems and energy efficiency on the performance of the energy sector," Renewable Energy, Elsevier, vol. 193(C), pages 1041-1048.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:1041-1048
    DOI: 10.1016/j.renene.2022.05.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812200684X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mai, Thanh & Mushtaq, Shahbaz & Loch, Adam & Reardon-Smith, K. & An-Vo, Duc-Anh, 2019. "A systems thinking approach to water trade: Finding leverage for sustainable development," Land Use Policy, Elsevier, vol. 82(C), pages 595-608.
    2. Hunt, Lester C. & Judge, Guy & Ninomiya, Yasushi, 2003. "Underlying trends and seasonality in UK energy demand: a sectoral analysis," Energy Economics, Elsevier, vol. 25(1), pages 93-118, January.
    3. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.
    4. Kumar Narayan, Paresh & Narayan, Seema & Popp, Stephan, 2010. "Energy consumption at the state level: The unit root null hypothesis from Australia," Applied Energy, Elsevier, vol. 87(6), pages 1953-1962, June.
    5. Lin, Chiun-Sin & Liou, Fen-May & Huang, Chih-Pin, 2011. "Grey forecasting model for CO2 emissions: A Taiwan study," Applied Energy, Elsevier, vol. 88(11), pages 3816-3820.
    6. Barlas, Yaman, 1989. "Multiple tests for validation of system dynamics type of simulation models," European Journal of Operational Research, Elsevier, vol. 42(1), pages 59-87, September.
    7. Geem, Zong Woo & Roper, William E., 2009. "Energy demand estimation of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 37(10), pages 4049-4054, October.
    8. Blakers, Andrew & Lu, Bin & Stocks, Matthew, 2017. "100% renewable electricity in Australia," Energy, Elsevier, vol. 133(C), pages 471-482.
    9. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    10. Hansen, Kenneth & Mathiesen, Brian Vad & Skov, Iva Ridjan, 2019. "Full energy system transition towards 100% renewable energy in Germany in 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 1-13.
    11. Creutzig, Felix & Goldschmidt, Jan Christoph & Lehmann, Paul & Schmid, Eva & von Blücher, Felix & Breyer, Christian & Fernandez, Blanca & Jakob, Michael & Knopf, Brigitte & Lohrey, Steffen & Susca, Ti, 2014. "Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1015-1028.
    12. Kornelis Blok, 2004. "Improving Energy Efficiency by Five Percent and More per Year?," Journal of Industrial Ecology, Yale University, vol. 8(4), pages 87-99, October.
    13. Talal Yusaf & Louis Fernandes & Abd Rahim Abu Talib & Yazan S. M. Altarazi & Waleed Alrefae & Kumaran Kadirgama & Devarajan Ramasamy & Aruna Jayasuriya & Gordon Brown & Rizalman Mamat & Hayder Al Dhah, 2022. "Sustainable Aviation—Hydrogen Is the Future," Sustainability, MDPI, vol. 14(1), pages 1-17, January.
    14. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    15. Yi-Ming Wei & Gang Wu & Ying Fan & Lan-Cui Liu, 2006. "Progress in energy complex system modelling and analysis," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 25(1/2), pages 109-128.
    16. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    17. Narayan, Paresh Kumar & Smyth, Russell, 2005. "Electricity consumption, employment and real income in Australia evidence from multivariate Granger causality tests," Energy Policy, Elsevier, vol. 33(9), pages 1109-1116, June.
    18. Giovanna Morelli & Marco Mele, 2020. "Energy Consumption, CO2 and Economic Growth Nexus in Vietnam," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 443-449.
    19. Pao, Hsiao-Tien & Tsai, Chung-Ming, 2011. "Modeling and forecasting the CO2 emissions, energy consumption, and economic growth in Brazil," Energy, Elsevier, vol. 36(5), pages 2450-2458.
    20. Muhammad Shahbaz & Mita Bhattacharya & Khalid Ahmed, 2017. "CO emissions in Australia: economic and non-economic drivers in the long-run," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1273-1286, March.
    21. Yi Zuo & Ying-ling Shi & Yu-zhuo Zhang, 2017. "Research on the Sustainable Development of an Economic-Energy-Environment (3E) System Based on System Dynamics (SD): A Case Study of the Beijing-Tianjin-Hebei Region in China," Sustainability, MDPI, vol. 9(10), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leusin, Matheus Eduardo & Uriona Maldonado, Mauricio & Herrera, Milton M., 2024. "Exploring the influence of Brazilian project cancellation mechanisms on new wind power generation," Renewable Energy, Elsevier, vol. 221(C).
    2. Honglei Shi & Guiling Wang & Wei Zhang & Feng Ma & Wenjing Lin & Menglei Ji, 2023. "Predicting the Potential of China’s Geothermal Energy in Industrial Development and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(9), pages 1-16, May.
    3. Ruoso, Ana Cristina & Ribeiro, José Luis Duarte & Olaru, Doina, 2024. "Electric vehicles' impact on energy balance: Three-country comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laimon, M. & Yusaf, T., 2024. "Towards energy freedom: Exploring sustainable solutions for energy independence and self-sufficiency using integrated renewable energy-driven hydrogen system," Renewable Energy, Elsevier, vol. 222(C).
    2. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    3. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    4. Jeong, Kwangbok & Koo, Choongwan & Hong, Taehoon, 2014. "An estimation model for determining the annual energy cost budget in educational facilities using SARIMA (seasonal autoregressive integrated moving average) and ANN (artificial neural network)," Energy, Elsevier, vol. 71(C), pages 71-79.
    5. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    6. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    7. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    8. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    9. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Wang, Qiang & Li, Shuyu & Li, Rongrong & Ma, Minglu, 2018. "Forecasting U.S. shale gas monthly production using a hybrid ARIMA and metabolic nonlinear grey model," Energy, Elsevier, vol. 160(C), pages 378-387.
    11. Hong Chang & Wei Sun & Xingsheng Gu, 2013. "Forecasting Energy CO 2 Emissions Using a Quantum Harmony Search Algorithm-Based DMSFE Combination Model," Energies, MDPI, vol. 6(3), pages 1-22, March.
    12. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1, November.
    13. Dmitry Burakov, 2019. "Are Oil Shocks Permanent or Temporary? Panel Data Evidence from Crude Oil Production in 15 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 295-298.
    14. José Manuel Belbute & Alfredo Marvão Pereira, 2016. "Does final energy demand in Portugal exhibit long memory? A fractional integration analysis," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 15(2), pages 59-77, August.
    15. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    16. Tiba, Sofien & Omri, Anis, 2017. "Literature survey on the relationships between energy, environment and economic growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1129-1146.
    17. Shahbaz, Muhammad & Khraief, Naceur & Mahalik, Mantu Kumar & Zaman, Khair Uz, 2014. "Are fluctuations in natural gas consumption per capita transitory? Evidence from time series and panel unit root tests," Energy, Elsevier, vol. 78(C), pages 183-195.
    18. Wajahat Ali & Inam Ur Rahman & Muhammad Zahid & Muhammad Anees Khan & Tafazal Kumail, 2020. "Do technology and structural changes favour environment in Malaysia: an ARDL-based evidence for environmental Kuznets curve," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7927-7950, December.
    19. Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
    20. Yi-Chung Hu & Peng Jiang & Jung-Fa Tsai & Ching-Ying Yu, 2021. "An Optimized Fractional Grey Prediction Model for Carbon Dioxide Emissions Forecasting," IJERPH, MDPI, vol. 18(2), pages 1-12, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:1041-1048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.