IDEAS home Printed from https://ideas.repec.org/a/anm/alpnmr/v8y2020i1p59-78.html
   My bibliography  Save this article

Modeling of Energy Consumption Forecast with Economic Indicators Using Particle Swarm Optimization and Genetic Algorithm: An Application in Turkey between 1979 and 2050

Author

Listed:
  • Emre Yakut
  • Ezel Özkan

Abstract

Particle swarm optimization (PSO) and genetic algorithm (GA) are the most important optimization techniques among various modern heuristic optimization techniques. The study aims to forecast the energy consumption in Turkey until the year 2050 using PSO and GA models. The annual data provided by the Ministry of Energy and Natural Resources, International Energy Agency (IEA), OECD, Turkish Statistical Institute were used in the study. PSO and GA energy demand forecasting models are developed using population, import, export and gross domestic product (GDP). All models are proposed in linear and quadratic forms. Turkey's energy consumption is projected according to four different scenarios. According the analysis results, the study found for the PSO analysis the R2 values in the linear model was 91.72%, in the quadratic model was 94.06% at the same time for the GA analysis R2 values in the linear model was 91.71%, in the quadratic model was 93.97%. Additionally, the mean absolute percent error rates were 11.58% for PSO and 11.69% for GA in the quadratic model. According to Lewis, these values showed that models could be used for energy consumption estimation purposes. The study determined that the statistical performance criteria of PSO models were more successful than the statistical performance criteria of GA models.

Suggested Citation

  • Emre Yakut & Ezel Özkan, 2020. "Modeling of Energy Consumption Forecast with Economic Indicators Using Particle Swarm Optimization and Genetic Algorithm: An Application in Turkey between 1979 and 2050," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(1), pages 59-78, June.
  • Handle: RePEc:anm:alpnmr:v:8:y:2020:i:1:p:59-78
    DOI: https://doi.org/10.17093/alphanumeric.747427
    as

    Download full text from publisher

    File URL: https://www.alphanumericjournal.com/media/Issue/volume-8-issue-1-2020/modeling-of-energy-consumption-forecast-with-economic-indica_RrU4BC0.pdf
    Download Restriction: no

    File URL: https://alphanumericjournal.com/article/modeling-of-energy-consumption-forecast-with-economic-indicators-using-particle-swarm-optimization-and-genetic-algorithm-an-application-in-turkey-between-1979-and-2050/
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.17093/alphanumeric.747427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ünler, Alper, 2008. "Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025," Energy Policy, Elsevier, vol. 36(6), pages 1937-1944, June.
    2. Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
    3. Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
    4. Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
    5. Shamshirband, Shahaboddin & Mohammadi, Kasra & Yee, Por Lip & Petković, Dalibor & Mostafaeipour, Ali, 2015. "A comparative evaluation for identifying the suitability of extreme learning machine to predict horizontal global solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1031-1042.
    6. Maurice Clerc, 2010. "Beyond Standard Particle Swarm Optimisation," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 1(4), pages 46-61, October.
    7. Yu, Shi-wei & Zhu, Ke-jun, 2012. "A hybrid procedure for energy demand forecasting in China," Energy, Elsevier, vol. 37(1), pages 396-404.
    8. Song, Qingbin & Li, Jinhui & Duan, Huabo & Yu, Danfeng & Wang, Zhishi, 2017. "Towards to sustainable energy-efficient city: A case study of Macau," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 504-514.
    9. Geem, Zong Woo & Roper, William E., 2009. "Energy demand estimation of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 37(10), pages 4049-4054, October.
    10. Huang, Yophy & Bor, Yunchang Jeffrey & Peng, Chieh-Yu, 2011. "The long-term forecast of Taiwan’s energy supply and demand: LEAP model application," Energy Policy, Elsevier, vol. 39(11), pages 6790-6803.
    11. Haldenbilen, Soner & Ceylan, Halim, 2005. "Genetic algorithm approach to estimate transport energy demand in Turkey," Energy Policy, Elsevier, vol. 33(1), pages 89-98, January.
    12. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    13. Kisi, Ozgur, 2014. "Modeling solar radiation of Mediterranean region in Turkey by using fuzzy genetic approach," Energy, Elsevier, vol. 64(C), pages 429-436.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
    3. Reza Hafezi & Amir Naser Akhavan & Mazdak Zamani & Saeed Pakseresht & Shahaboddin Shamshirband, 2019. "Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand," Energies, MDPI, vol. 12(21), pages 1-22, October.
    4. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2012. "A PSO–GA optimal model to estimate primary energy demand of China," Energy Policy, Elsevier, vol. 42(C), pages 329-340.
    5. Colmenar, J.M. & Hidalgo, J.I. & Salcedo-Sanz, S., 2018. "Automatic generation of models for energy demand estimation using Grammatical Evolution," Energy, Elsevier, vol. 164(C), pages 183-193.
    6. Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
    7. Uzlu, Ergun & Kankal, Murat & Akpınar, Adem & Dede, Tayfun, 2014. "Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm," Energy, Elsevier, vol. 75(C), pages 295-303.
    8. Yu, Shi-wei & Zhu, Ke-jun, 2012. "A hybrid procedure for energy demand forecasting in China," Energy, Elsevier, vol. 37(1), pages 396-404.
    9. Atul Anand & L Suganthi, 2018. "Hybrid GA-PSO Optimization of Artificial Neural Network for Forecasting Electricity Demand," Energies, MDPI, vol. 11(4), pages 1-15, March.
    10. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    11. Wu, Qunli & Peng, Chenyang, 2017. "A hybrid BAG-SA optimal approach to estimate energy demand of China," Energy, Elsevier, vol. 120(C), pages 985-995.
    12. Aydin, Gokhan, 2014. "Modeling of energy consumption based on economic and demographic factors: The case of Turkey with projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 382-389.
    13. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.
    14. Wu, Zhibin & Xu, Jiuping, 2013. "Predicting and optimization of energy consumption using system dynamics-fuzzy multiple objective programming in world heritage areas," Energy, Elsevier, vol. 49(C), pages 19-31.
    15. Abdulkerim Karaaslan & Mesliha Gezen, 2017. "Forecasting of Turkey s Sectoral Energy Demand by Using Fuzzy Grey Regression Model," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 67-77.
    16. Muhammad Muhitur Rahman & Syed Masiur Rahman & Md Shafiullah & Md Arif Hasan & Uneb Gazder & Abdullah Al Mamun & Umer Mansoor & Mohammad Tamim Kashifi & Omer Reshi & Md Arifuzzaman & Md Kamrul Islam &, 2022. "Energy Demand of the Road Transport Sector of Saudi Arabia—Application of a Causality-Based Machine Learning Model to Ensure Sustainable Environment," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    17. Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
    18. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    19. Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
    20. Mehmet Kayakuş, 2020. "The Estimation of Turkey's Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(2), pages 227-236, December.

    More about this item

    Keywords

    Energy Consumption; Forecasting; Genetic Algorithm; Particle Swarm Optimization; Turkey;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:anm:alpnmr:v:8:y:2020:i:1:p:59-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bahadir Fatih Yildirim (email available below). General contact details of provider: https://www.alphanumericjournal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.