Energy Consumption Forecasting in Korea Using Machine Learning Algorithms
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Gonzales Chavez, S & Xiberta Bernat, J & Llaneza Coalla, H, 1999. "Forecasting of energy production and consumption in Asturias (northern Spain)," Energy, Elsevier, vol. 24(3), pages 183-198.
- Jihoon Moon & Yongsung Kim & Minjae Son & Eenjun Hwang, 2018. "Hybrid Short-Term Load Forecasting Scheme Using Random Forest and Multilayer Perceptron," Energies, MDPI, vol. 11(12), pages 1-20, November.
- Geem, Zong Woo & Roper, William E., 2009. "Energy demand estimation of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 37(10), pages 4049-4054, October.
- Ardakani, F.J. & Ardehali, M.M., 2014. "Long-term electrical energy consumption forecasting for developing and developed economies based on different optimized models and historical data types," Energy, Elsevier, vol. 65(C), pages 452-461.
- Yoon‐Hee Ha & John Byrne, 2019. "The rise and fall of green growth: Korea's energy sector experiment and its lessons for sustainable energy policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(4), July.
- Crompton, Paul & Wu, Yanrui, 2005.
"Energy consumption in China: past trends and future directions,"
Energy Economics, Elsevier, vol. 27(1), pages 195-208, January.
- Paul Crompton & Yanrui Wu, 2004. "Energy Consumption in China: Past Trends and Future Directions," Economics Discussion / Working Papers 04-22, The University of Western Australia, Department of Economics.
- Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
- Wang, Qiang & Li, Shuyu & Li, Rongrong, 2018. "Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques," Energy, Elsevier, vol. 161(C), pages 821-831.
- Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
- Pao, Hsiao-Tien, 2006. "Comparing linear and nonlinear forecasts for Taiwan's electricity consumption," Energy, Elsevier, vol. 31(12), pages 2129-2141.
- Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
- Sözen, Adnan & Arcaklioglu, Erol & Özkaymak, Mehmet, 2005. "Turkey's net energy consumption," Applied Energy, Elsevier, vol. 81(2), pages 209-221, June.
- Seunghui Lee & Sungwon Jung & Jaewook Lee, 2019. "Prediction Model Based on an Artificial Neural Network for User-Based Building Energy Consumption in South Korea," Energies, MDPI, vol. 12(4), pages 1-18, February.
- Saab, Samer & Badr, Elie & Nasr, George, 2001. "Univariate modeling and forecasting of energy consumption: the case of electricity in Lebanon," Energy, Elsevier, vol. 26(1), pages 1-14.
- Ediger, Volkan S. & Akar, Sertac, 2007. "ARIMA forecasting of primary energy demand by fuel in Turkey," Energy Policy, Elsevier, vol. 35(3), pages 1701-1708, March.
- Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
- Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
- Xiong, Ping-ping & Dang, Yao-guo & Yao, Tian-xiang & Wang, Zheng-xin, 2014. "Optimal modeling and forecasting of the energy consumption and production in China," Energy, Elsevier, vol. 77(C), pages 623-634.
- Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
- Mohamed, Zaid & Bodger, Pat, 2005. "Forecasting electricity consumption in New Zealand using economic and demographic variables," Energy, Elsevier, vol. 30(10), pages 1833-1843.
- Oh, Wankeun & Lee, Kihoon, 2004. "Causal relationship between energy consumption and GDP revisited: the case of Korea 1970-1999," Energy Economics, Elsevier, vol. 26(1), pages 51-59, January.
- Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
- Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
- Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gökay Yörük & Ugur Bac & Fatma Yerlikaya-Özkurt & Kamil Demirberk Ünlü, 2023. "Strategic Electricity Production Planning of Turkey via Mixed Integer Programming Based on Time Series Forecasting," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
- Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
- Milosz Smolarczyk & Jakub Pawluk & Alicja Kotyla & Sebastian Plamowski & Katarzyna Kaminska & Krzysztof Szczypiorski, 2023. "Machine Learning Algorithms for Identifying Dependencies in OT Protocols," Energies, MDPI, vol. 16(10), pages 1-24, May.
- Marcin Relich & Arkadiusz Gola & Małgorzata Jasiulewicz-Kaczmarek, 2022. "Identifying Improvement Opportunities in Product Design for Reducing Energy Consumption," Energies, MDPI, vol. 15(24), pages 1-19, December.
- Marwa Salah EIDin Fahmy & Farhan Ahmed & Farah Durani & Štefan Bojnec & Mona Mohamed Ghareeb, 2023. "Predicting Electricity Consumption in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(1), pages 1-20, January.
- Zaher Abusaq & Sadaf Zahoor & Muhammad Salman Habib & Mudassar Rehman & Jawad Mahmood & Mohammad Kanan & Ray Tahir Mushtaq, 2023. "Improving Energy Performance in Flexographic Printing Process through Lean and AI Techniques: A Case Study," Energies, MDPI, vol. 16(4), pages 1-15, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Akdi, Yılmaz & Gölveren, Elif & Okkaoğlu, Yasin, 2020. "Daily electrical energy consumption: Periodicity, harmonic regression method and forecasting," Energy, Elsevier, vol. 191(C).
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
- Shao, Zhen & Gao, Fei & Zhang, Qiang & Yang, Shan-Lin, 2015. "Multivariate statistical and similarity measure based semiparametric modeling of the probability distribution: A novel approach to the case study of mid-long term electricity consumption forecasting i," Applied Energy, Elsevier, vol. 156(C), pages 502-518.
- Zeng, Yu-Rong & Zeng, Yi & Choi, Beomjin & Wang, Lin, 2017. "Multifactor-influenced energy consumption forecasting using enhanced back-propagation neural network," Energy, Elsevier, vol. 127(C), pages 381-396.
- Huang, Liqiao & Liao, Qi & Qiu, Rui & Liang, Yongtu & Long, Yin, 2021. "Prediction-based analysis on power consumption gap under long-term emergency: A case in China under COVID-19," Applied Energy, Elsevier, vol. 283(C).
- Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
- Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
- Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
- Mehmet Kayakuş, 2020. "The Estimation of Turkey's Energy Demand Through Artificial Neural Networks and Support Vector Regression Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(2), pages 227-236, December.
- Kaytez, Fazil, 2020. "A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption," Energy, Elsevier, vol. 197(C).
- Uzlu, Ergun & Kankal, Murat & Akpınar, Adem & Dede, Tayfun, 2014. "Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm," Energy, Elsevier, vol. 75(C), pages 295-303.
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Wenting Zhao & Juanjuan Zhao & Xilong Yao & Zhixin Jin & Pan Wang, 2019. "A Novel Adaptive Intelligent Ensemble Model for Forecasting Primary Energy Demand," Energies, MDPI, vol. 12(7), pages 1-28, April.
- Gulay, Emrah & Duru, Okan, 2020. "Hybrid modeling in the predictive analytics of energy systems and prices," Applied Energy, Elsevier, vol. 268(C).
- A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
- Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60, February.
- Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
More about this item
Keywords
Total Energy Supply; energy consumption; forecasting; deep learning; neural network; artificial intelligence; random forest; XGBoost; LSTM; Korea;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4880-:d:854656. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.