IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v8y2004i4p87-99.html
   My bibliography  Save this article

Improving Energy Efficiency by Five Percent and More per Year?

Author

Listed:
  • Kornelis Blok

Abstract

Reduction of specific energy consumption by 1% to 2% per year is typically what is considered feasible for end‐use energy applications. This article tries to answer the question of whether much higher rates, for example 5% and more, are feasible fornew equipment, installations, and buildings. After examining some end‐use functions in industry, buildings, and the transport sector, it is concluded that for the foreseeable future—that is, not more than 10 to 20 years into the future—such high rates of reduction of specific energy consumption are indeed possible. For the longer term, no definitive proof is available, but there are also no indications that such high rates could not be maintained. The effect of the reduction of specific energy consumption on total energy use depends on the growth of energy‐using activities and on the replacement rates of capital stock. Taking these into account, it is estimated that for industrialized countries a reduction of absolute total energy use by 50% in 50 years compared with the current levels is possible. Such a reduction requires a huge effort in innovation; however, the possibilities for stimulating innovation seem not to be exhausted yet.

Suggested Citation

  • Kornelis Blok, 2004. "Improving Energy Efficiency by Five Percent and More per Year?," Journal of Industrial Ecology, Yale University, vol. 8(4), pages 87-99, October.
  • Handle: RePEc:bla:inecol:v:8:y:2004:i:4:p:87-99
    DOI: 10.1162/1088198043630478
    as

    Download full text from publisher

    File URL: https://doi.org/10.1162/1088198043630478
    Download Restriction: no

    File URL: https://libkey.io/10.1162/1088198043630478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaidis, Yiannis & Pilavachi, Petros A. & Chletsis, Alexandros, 2009. "Economic evaluation of energy saving measures in a common type of Greek building," Applied Energy, Elsevier, vol. 86(12), pages 2550-2559, December.
    2. Doukas, Haris & Papadopoulou, Alexandra G. & Psarras, John & Ragwitz, Mario & Schlomann, Barbara, 2008. "Sustainable reference methodology for energy end-use efficiency data in the EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2159-2176, October.
    3. Ó Broin, Eoin & Mata, Érika & Göransson, Anders & Johnsson, Filip, 2013. "The effect of improved efficiency on energy savings in EU-27 buildings," Energy, Elsevier, vol. 57(C), pages 134-148.
    4. Kemp-Benedict, Eric, 2014. "Shifting to a Green Economy: Lock-in, Path Dependence, and Policy Options," MPRA Paper 60175, University Library of Munich, Germany.
    5. Blok, Kornelis, 2005. "Enhanced policies for the improvement of electricity efficiencies," Energy Policy, Elsevier, vol. 33(13), pages 1635-1641, September.
    6. Atit Tippichai, 2022. "Decomposition Analysis of Energy Consumption in Thailand, 1990-2020," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 10-14, July.
    7. Fekete, Hanna & Kuramochi, Takeshi & Roelfsema, Mark & Elzen, Michel den & Forsell, Nicklas & Höhne, Niklas & Luna, Lisa & Hans, Frederic & Sterl, Sebastian & Olivier, Jos & van Soest, Heleen & Frank,, 2021. "A review of successful climate change mitigation policies in major emitting economies and the potential of global replication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Cullen, Jonathan M. & Allwood, Julian M., 2010. "Theoretical efficiency limits for energy conversion devices," Energy, Elsevier, vol. 35(5), pages 2059-2069.
    9. Laimon, Mohamd & Mai, Thanh & Goh, Steven & Yusaf, Talal, 2022. "System dynamics modelling to assess the impact of renewable energy systems and energy efficiency on the performance of the energy sector," Renewable Energy, Elsevier, vol. 193(C), pages 1041-1048.
    10. Saygin, D. & Worrell, E. & Tam, C. & Trudeau, N. & Gielen, D.J. & Weiss, M. & Patel, M.K., 2012. "Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry," Energy, Elsevier, vol. 44(1), pages 1094-1106.
    11. Kornelis Blok & Angélica Afanador & Irina van der Hoorn & Tom Berg & Oreane Y. Edelenbosch & Detlef P. van Vuuren, 2020. "Assessment of Sectoral Greenhouse Gas Emission Reduction Potentials for 2030," Energies, MDPI, vol. 13(4), pages 1-24, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:8:y:2004:i:4:p:87-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.