Developing a Data Mining Based Model to Extract Predictor Factors in Energy Systems: Application of Global Natural Gas Demand
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Gejirifu De & Wangfeng Gao, 2018. "Forecasting China’s Natural Gas Consumption Based on AdaBoost-Particle Swarm Optimization-Extreme Learning Machine Integrated Learning Method," Energies, MDPI, vol. 11(11), pages 1-20, October.
- Venus Khim-Sen Liew, 2004. "Which Lag Length Selection Criteria Should We Employ?," Economics Bulletin, AccessEcon, vol. 3(33), pages 1-9.
- Christiane Baumeister & Lutz Kilian, 2014.
"Real-Time Analysis of Oil Price Risks Using Forecast Scenarios,"
IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 62(1), pages 119-145, April.
- Kilian, Lutz & Baumeister, Christiane, 2011. "Real-Time Analysis of Oil Price Risks Using Forecast Scenarios," CEPR Discussion Papers 8698, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Lutz Kilian, 2012. "Real-Time Analysis of Oil Price Risks Using Forecast Scenarios," Staff Working Papers 12-1, Bank of Canada.
- Rout, Ullash K. & Voβ, Alfred & Singh, Anoop & Fahl, Ulrich & Blesl, Markus & Ó Gallachóir, Brian P., 2011. "Energy and emissions forecast of China over a long-time horizon," Energy, Elsevier, vol. 36(1), pages 1-11.
- Geem, Zong Woo & Roper, William E., 2009. "Energy demand estimation of South Korea using artificial neural network," Energy Policy, Elsevier, vol. 37(10), pages 4049-4054, October.
- Yu, Feng & Xu, Xiaozhong, 2014. "A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network," Applied Energy, Elsevier, vol. 134(C), pages 102-113.
- Zeng, Bo & Li, Chuan, 2016. "Forecasting the natural gas demand in China using a self-adapting intelligent grey model," Energy, Elsevier, vol. 112(C), pages 810-825.
- Tao, Zaipu, 2010. "Scenarios of China's oil consumption per capita (OCPC) using a hybrid Factor Decomposition–System Dynamics (SD) simulation," Energy, Elsevier, vol. 35(1), pages 168-180.
- Mackay, R. M. & Probert, S. D., 1995. "Crude oil and natural gas supplies and demands up to the year 2010 for France," Applied Energy, Elsevier, vol. 50(3), pages 185-208.
- Özge Dilaver & Zafer Dilaver & Lester C Hunt, 2013. "What Drives Natural Gas Consumption in Europe? Analysis and Projections," Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 143, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
- Ünler, Alper, 2008. "Improvement of energy demand forecasts using swarm intelligence: The case of Turkey with projections to 2025," Energy Policy, Elsevier, vol. 36(6), pages 1937-1944, June.
- Zhu, L. & Li, M.S. & Wu, Q.H. & Jiang, L., 2015. "Short-term natural gas demand prediction based on support vector regression with false neighbours filtered," Energy, Elsevier, vol. 80(C), pages 428-436.
- Zavanella, Lucio & Zanoni, Simone & Ferretti, Ivan & Mazzoldi, Laura, 2015. "Energy demand in production systems: A Queuing Theory perspective," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 393-400.
- Kumar, Ujjwal & Jain, V.K., 2010. "Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India," Energy, Elsevier, vol. 35(4), pages 1709-1716.
- Guo-Feng Fan & An Wang & Wei-Chiang Hong, 2018. "Combining Grey Model and Self-Adapting Intelligent Grey Model with Genetic Algorithm and Annual Share Changes in Natural Gas Demand Forecasting," Energies, MDPI, vol. 11(7), pages 1-21, June.
- Ekonomou, L., 2010. "Greek long-term energy consumption prediction using artificial neural networks," Energy, Elsevier, vol. 35(2), pages 512-517.
- Alipour, M. & Alighaleh, S. & Hafezi, R. & Omranievardi, M., 2017. "A new hybrid decision framework for prioritizing funding allocation to Iran's energy sector," Energy, Elsevier, vol. 121(C), pages 388-402.
- Forouzanfar, Mehdi & Doustmohammadi, Ali & Menhaj, M. Bagher & Hasanzadeh, Samira, 2010. "Modeling and estimation of the natural gas consumption for residential and commercial sectors in Iran," Applied Energy, Elsevier, vol. 87(1), pages 268-274, January.
- Alcántara, Vicent & del Río, Pablo & Hernández, Félix, 2010. "Structural analysis of electricity consumption by productive sectors. The Spanish case," Energy, Elsevier, vol. 35(5), pages 2088-2098.
- Kankal, Murat & AkpInar, Adem & Kömürcü, Murat Ihsan & Özsahin, Talat Sükrü, 2011. "Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables," Applied Energy, Elsevier, vol. 88(5), pages 1927-1939, May.
- Sözen, Adnan & Arcaklioglu, Erol & Özkaymak, Mehmet, 2005. "Turkey's net energy consumption," Applied Energy, Elsevier, vol. 81(2), pages 209-221, June.
- O'Neill, Brian C. & Desai, Mausami, 2005. "Accuracy of past projections of US energy consumption," Energy Policy, Elsevier, vol. 33(8), pages 979-993, May.
- Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2017. "Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model," Energy, Elsevier, vol. 118(C), pages 231-245.
- Sozen, Adnan & Arcaklioglu, Erol, 2007. "Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey," Energy Policy, Elsevier, vol. 35(10), pages 4981-4992, October.
- Adams, F. Gerard & Shachmurove, Yochanan, 2008. "Modeling and forecasting energy consumption in China: Implications for Chinese energy demand and imports in 2020," Energy Economics, Elsevier, vol. 30(3), pages 1263-1278, May.
- Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
- Kovačič, Miha & Šarler, Božidar, 2014. "Genetic programming prediction of the natural gas consumption in a steel plant," Energy, Elsevier, vol. 66(C), pages 273-284.
- Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & Wood, David A., 2019. "A Layered Uncertainties Scenario Synthesizing (LUSS) model applied to evaluate multiple potential long-run outcomes for Iran's natural gas exports," Energy, Elsevier, vol. 169(C), pages 646-659.
- Ozturk, Harun Kemal & Ceylan, Halim & Hepbasli, Arif & Utlu, Zafer, 2004. "Estimating petroleum exergy production and consumption using vehicle ownership and GDP based on genetic algorithm approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(3), pages 289-302, June.
- Zhang, Ming & Mu, Hailin & Li, Gang & Ning, Yadong, 2009. "Forecasting the transport energy demand based on PLSR method in China," Energy, Elsevier, vol. 34(9), pages 1396-1400.
- Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
- Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
- Huang, Yophy & Bor, Yunchang Jeffrey & Peng, Chieh-Yu, 2011. "The long-term forecast of Taiwan’s energy supply and demand: LEAP model application," Energy Policy, Elsevier, vol. 39(11), pages 6790-6803.
- Arsenault, E. & Bernard, J. -T. & Carr, C. W. & Genest-Laplante, E., 1995.
"A total energy demand model of Quebec : Forecasting properties,"
Energy Economics, Elsevier, vol. 17(2), pages 163-171, April.
- Arsenault, E. & Bernard, J.T. & Carr, C.W. & Genest-Laplante, E., 1993. "A Total Energy Demand Model of Quebec: Forecasting Properties," Papers 9329, Laval - Recherche en Energie.
- Mohammad Mehdi Lotfinejad & Reza Hafezi & Majid Khanali & Seyed Sina Hosseini & Mehdi Mehrpooya & Shahaboddin Shamshirband, 2018. "A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study," Energies, MDPI, vol. 11(5), pages 1-15, May.
- Intarapravich, Duangjai & Johnson, Charles J. & Li, Binsheng & Long, Scott & Pezeshki, Shiva & Prawiraatmadja, Widhyawan & Tang, Frank C. & Wu, Kang, 1996. "3. Asia-Pacific energy supply and demand to 2010," Energy, Elsevier, vol. 21(11), pages 1017-1039.
- Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Scenario analysis of nonresidential natural gas consumption in Italy," Applied Energy, Elsevier, vol. 113(C), pages 392-403.
- Liu, Xiuli & Moreno, Blanca & García, Ana Salomé, 2016. "A grey neural network and input-output combined forecasting model. Primary energy consumption forecasts in Spanish economic sectors," Energy, Elsevier, vol. 115(P1), pages 1042-1054.
- Hunt, Lester C. & Ninomiya, Yasushi, 2005. "Primary energy demand in Japan: an empirical analysis of long-term trends and future CO2 emissions," Energy Policy, Elsevier, vol. 33(11), pages 1409-1424, July.
- Peter Winker, 2000. "Optimized Multivariate Lag Structure Selection," Computational Economics, Springer;Society for Computational Economics, vol. 16(1/2), pages 87-103, October.
- Parikh, Jyoti & Purohit, Pallav & Maitra, Pallavi, 2007. "Demand projections of petroleum products and natural gas in India," Energy, Elsevier, vol. 32(10), pages 1825-1837.
- Nikos Kampelis & Elisavet Tsekeri & Dionysia Kolokotsa & Kostas Kalaitzakis & Daniela Isidori & Cristina Cristalli, 2018. "Development of Demand Response Energy Management Optimization at Building and District Levels Using Genetic Algorithm and Artificial Neural Network Modelling Power Predictions," Energies, MDPI, vol. 11(11), pages 1-22, November.
- Sen, Parag & Roy, Mousumi & Pal, Parimal, 2016. "Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization," Energy, Elsevier, vol. 116(P1), pages 1031-1038.
- Ermis, K. & Midilli, A. & Dincer, I. & Rosen, M.A., 2007. "Artificial neural network analysis of world green energy use," Energy Policy, Elsevier, vol. 35(3), pages 1731-1743, March.
- Aydinalp-Koksal, Merih & Ugursal, V. Ismet, 2008. "Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector," Applied Energy, Elsevier, vol. 85(4), pages 271-296, April.
- Nel, Willem P. & Cooper, Christopher J., 2008. "A critical review of IEA's oil demand forecast for China," Energy Policy, Elsevier, vol. 36(3), pages 1096-1106, March.
- Askari, S. & Montazerin, N. & Zarandi, M.H. Fazel, 2015. "Forecasting semi-dynamic response of natural gas networks to nodal gas consumptions using genetic fuzzy systems," Energy, Elsevier, vol. 83(C), pages 252-266.
- Gori, F. & Ludovisi, D. & Cerritelli, P.F., 2007. "Forecast of oil price and consumption in the short term under three scenarios: Parabolic, linear and chaotic behaviour," Energy, Elsevier, vol. 32(7), pages 1291-1296.
- Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
- Alipour, M. & Hafezi, R. & Amer, M. & Akhavan, A.N., 2017. "A new hybrid fuzzy cognitive map-based scenario planning approach for Iran's oil production pathways in the post–sanction period," Energy, Elsevier, vol. 135(C), pages 851-864.
- Mustafa Akpinar & M. Fatih Adak & Nejat Yumusak, 2017. "Day-Ahead Natural Gas Demand Forecasting Using Optimized ABC-Based Neural Network with Sliding Window Technique: The Case Study of Regional Basis in Turkey," Energies, MDPI, vol. 10(6), pages 1-20, June.
- Persaud, A. Jai & Kumar, Uma, 2001. "An eclectic approach in energy forecasting: a case of Natural Resources Canada's (NRCan's) oil and gas outlook," Energy Policy, Elsevier, vol. 29(4), pages 303-313, March.
- Alipour, Mohammad & Hafezi, Reza & Ervural, Bilal & Kaviani, Mohamad Amin & Kabak, Özgür, 2018. "Long-term policy evaluation: Application of a new robust decision framework for Iran's energy exports security," Energy, Elsevier, vol. 157(C), pages 914-931.
- Dehua Zheng & Min Shi & Yifeng Wang & Abinet Tesfaye Eseye & Jianhua Zhang, 2017. "Day-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy," Energies, MDPI, vol. 10(12), pages 1-23, December.
- Iniyan, S. & Suganthi, L. & Samuel, Anand A., 2006. "Energy models for commercial energy prediction and substitution of renewable energy sources," Energy Policy, Elsevier, vol. 34(17), pages 2640-2653, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & A. Wood, David, 2021. "Global natural gas demand to 2025: A learning scenario development model," Energy, Elsevier, vol. 224(C).
- Yang, Zhaoming & Liu, Zhe & Zhou, Jing & Song, Chaofan & Xiang, Qi & He, Qian & Hu, Jingjing & Faber, Michael H. & Zio, Enrico & Li, Zhenlin & Su, Huai & Zhang, Jinjun, 2023. "A graph neural network (GNN) method for assigning gas calorific values to natural gas pipeline networks," Energy, Elsevier, vol. 278(C).
- Alipour, M. & Hafezi, R. & Rani, Pratibha & Hafezi, Mehdi & Mardani, Abbas, 2021. "A new Pythagorean fuzzy-based decision-making method through entropy measure for fuel cell and hydrogen components supplier selection," Energy, Elsevier, vol. 234(C).
- Hafezi, Reza & Wood, David A. & Akhavan, Amir Naser & Pakseresht, Saeed, 2020. "Iran in the emerging global natural gas market: A scenario-based competitive analysis and policy assessment," Resources Policy, Elsevier, vol. 68(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Hafezi, Reza & Akhavan, AmirNaser & Pakseresht, Saeed & A. Wood, David, 2021. "Global natural gas demand to 2025: A learning scenario development model," Energy, Elsevier, vol. 224(C).
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
- Song, Jiancai & Zhang, Liyi & Jiang, Qingling & Ma, Yunpeng & Zhang, Xinxin & Xue, Guixiang & Shen, Xingliang & Wu, Xiangdong, 2022. "Estimate the daily consumption of natural gas in district heating system based on a hybrid seasonal decomposition and temporal convolutional network model," Applied Energy, Elsevier, vol. 309(C).
- Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2012. "A PSO–GA optimal model to estimate primary energy demand of China," Energy Policy, Elsevier, vol. 42(C), pages 329-340.
- Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
- Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
- Yu, Shi-wei & Zhu, Ke-jun, 2012. "A hybrid procedure for energy demand forecasting in China," Energy, Elsevier, vol. 37(1), pages 396-404.
- Guo-Feng Fan & An Wang & Wei-Chiang Hong, 2018. "Combining Grey Model and Self-Adapting Intelligent Grey Model with Genetic Algorithm and Annual Share Changes in Natural Gas Demand Forecasting," Energies, MDPI, vol. 11(7), pages 1-21, June.
- Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
- Ravnik, J. & Hriberšek, M., 2019. "A method for natural gas forecasting and preliminary allocation based on unique standard natural gas consumption profiles," Energy, Elsevier, vol. 180(C), pages 149-162.
- Uzlu, Ergun & Akpınar, Adem & Özturk, Hasan Tahsin & Nacar, Sinan & Kankal, Murat, 2014. "Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey," Energy, Elsevier, vol. 69(C), pages 638-647.
- Emre Yakut & Ezel Özkan, 2020. "Modeling of Energy Consumption Forecast with Economic Indicators Using Particle Swarm Optimization and Genetic Algorithm: An Application in Turkey between 1979 and 2050," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(1), pages 59-78, June.
- Uzlu, Ergun & Kankal, Murat & Akpınar, Adem & Dede, Tayfun, 2014. "Estimates of energy consumption in Turkey using neural networks with the teaching–learning-based optimization algorithm," Energy, Elsevier, vol. 75(C), pages 295-303.
- Konstantinos Papageorgiou & Elpiniki I. Papageorgiou & Katarzyna Poczeta & Dionysis Bochtis & George Stamoulis, 2020. "Forecasting of Day-Ahead Natural Gas Consumption Demand in Greece Using Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 13(9), pages 1-32, May.
- Olanrewaju, O.A & Jimoh, A.A, 2014. "Review of energy models to the development of an efficient industrial energy model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 661-671.
- Adom, Philip Kofi & Bekoe, William, 2012. "Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM," Energy, Elsevier, vol. 44(1), pages 367-380.
- Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
More about this item
Keywords
natural gas demands; prediction; energy market; genetic algorithm; artificial neural network; data mining;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:21:p:4124-:d:281381. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.