IDEAS home Printed from https://ideas.repec.org/p/oeg/wpaper/2016-03.html
   My bibliography  Save this paper

Energy efficiency and rebound effect in European road freight transport

Author

Listed:
  • Llorca, Manuel
  • Jamasb, Tooraj

Abstract

Energy efficiency has become a primary energy policy goal in Europe and many other countries and has conditioned the policies towards energy-intensive sectors such as road freight transport. However, energy efficiency improvements can lead to changes in the demand for energy services that offset some of the expected energy savings in the form of rebound effects. Consequently, forecasts of energy savings can be overstated. This paper analyses the energy efficiency and rebound effects for road freight transport in 15 European countries during the 1992-2012 period. We use a recent methodology to estimate an energy demand function using a stochastic frontier analysis approach and examine the influence of key features of rebound effect in the road freight transport sector. We obtain on average a fuel efficiency of 91% and a rebound effect of 18%. Our results indicate that the achieved energy efficiencies are retained to a large extent. We also find, among other results, that the rebound effect is higher in countries with higher fuel efficiency and better quality of logistics. Finally, a simulation analysis shows significant environmental externalities costs even in countries with lower rebound effect.

Suggested Citation

  • Llorca, Manuel & Jamasb, Tooraj, 2016. "Energy efficiency and rebound effect in European road freight transport," Efficiency Series Papers 2016/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
  • Handle: RePEc:oeg:wpaper:2016/03
    as

    Download full text from publisher

    File URL: https://www.unioviedo.es/oeg/ESP/esp_2016_03.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "Macroeconomic effects of efficiency policies for energy-intensive industries: The case of the UK Climate Change Agreements, 2000-2010," Energy Economics, Elsevier, vol. 29(4), pages 760-778, July.
    2. Martijn Brons & Panayotis Christidis, 2012. "External cost calculator for Marco Polo freight transport project proposals call 2012 version," JRC Research Reports JRC72879, Joint Research Centre.
    3. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    4. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    5. Filippini, Massimo & Hunt, Lester C., 2015. "Measurement of energy efficiency based on economic foundations," Energy Economics, Elsevier, vol. 52(S1), pages 5-16.
    6. Caudill, Steven B. & Ford, Jon M., 1993. "Biases in frontier estimation due to heteroscedasticity," Economics Letters, Elsevier, vol. 41(1), pages 17-20.
    7. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 59-80.
    8. Manuel Frondel and Colin Vance, 2013. "Re-Identifying the Rebound: What About Asymmetry?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. Saunders, Harry D., 2000. "A view from the macro side: rebound, backfire, and Khazzoom-Brookes," Energy Policy, Elsevier, vol. 28(6-7), pages 439-449, June.
    10. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    11. Sam Anson, 2009. "Rebound and disinvestment effects in oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector," Working Papers 0901, University of Strathclyde Business School, Department of Economics.
    12. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    13. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    14. Adeyemi, Olutomi I. & Hunt, Lester C., 2007. "Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change," Energy Economics, Elsevier, vol. 29(4), pages 693-709, July.
    15. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    16. Frondel, Manuel & Ritter, Nolan & Vance, Colin, 2012. "Heterogeneity in the rebound effect: Further evidence for Germany," Energy Economics, Elsevier, vol. 34(2), pages 461-467.
    17. Matos, Fernando J.F. & Silva, Francisco J.F., 2011. "The rebound effect on road freight transport: Empirical evidence from Portugal," Energy Policy, Elsevier, vol. 39(5), pages 2833-2841, May.
    18. Hymel, Kent M. & Small, Kenneth A. & Dender, Kurt Van, 2010. "Induced demand and rebound effects in road transport," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1220-1241, December.
    19. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    20. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, vol. 6(12), pages 1-28, December.
    21. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    22. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    23. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    24. Saunders, Harry D., 2008. "Fuel conserving (and using) production functions," Energy Economics, Elsevier, vol. 30(5), pages 2184-2235, September.
    25. Mork, Knut Anton, 1989. "Oil and Macroeconomy When Prices Go Up and Down: An Extension of Hamilton's Results," Journal of Political Economy, University of Chicago Press, vol. 97(3), pages 740-744, June.
    26. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    27. Piecyk, Maja I. & McKinnon, Alan C., 2010. "Forecasting the carbon footprint of road freight transport in 2020," International Journal of Production Economics, Elsevier, vol. 128(1), pages 31-42, November.
    28. Dermot Gately & Hillard G. Huntington, 2002. "The Asymmetric Effects of Changes in Price and Income on Energy and Oil Demand," The Energy Journal, , vol. 23(1), pages 19-55, January.
    29. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    30. Llorca, Manuel & Baños, José & Somoza, José & Arbués, Pelayo, 2014. "A latent class approach for estimating energy demands and efficiency in transport: An application to Latin America and the Caribbean," Efficiency Series Papers 2014/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    31. Daniel J. Graham & Stephen Glaister, 2002. "The Demand for Automobile Fuel: A Survey of Elasticities," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 1-25, January.
    32. Massimo Filippini & Luis Orea, 2014. "Applications of the stochastic frontier approach in Energy Economics," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 35-42.
    33. Kumbhakar, Subal C., 2011. "Estimation of production technology when the objective is to maximize return to the outlay," European Journal of Operational Research, Elsevier, vol. 208(2), pages 170-176, January.
    34. Roger Fouquet (ed.), 2013. "Handbook on Energy and Climate Change," Books, Edward Elgar Publishing, number 14429.
    35. Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
    36. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    37. De Borger, Bruno & Mulalic, Ismir, 2012. "The determinants of fuel use in the trucking industry—volume, fleet characteristics and the rebound effect," Transport Policy, Elsevier, vol. 24(C), pages 284-295.
    38. Wang, Zhaohua & Lu, Milin, 2014. "An empirical study of direct rebound effect for road freight transport in China," Applied Energy, Elsevier, vol. 133(C), pages 274-281.
    39. Dermot Gately, 1990. "The U.S. Demand for Highway Travel and Motor Fuel," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-74.
    40. Holguín-Veras, José & Thorson, Ellen, 2003. "Modeling commercial vehicle empty trips with a first order trip chain model," Transportation Research Part B: Methodological, Elsevier, vol. 37(2), pages 129-148, February.
    41. COELLI, Tim, 2000. "On the econometric estimation of the distance function representation of a production technology," LIDAM Discussion Papers CORE 2000042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    42. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    43. Ruzzenenti, F. & Basosi, R., 2008. "The rebound effect: An evolutionary perspective," Ecological Economics, Elsevier, vol. 67(4), pages 526-537, November.
    44. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    45. Filippini, Massimo & Hunt, Lester C. & Zorić, Jelena, 2014. "Impact of energy policy instruments on the estimated level of underlying energy efficiency in the EU residential sector," Energy Policy, Elsevier, vol. 69(C), pages 73-81.
    46. Joanne Evans & Massimo Filippini & Lester C. Hunt, 2013. "The contribution of energy efficiency towards meeting CO2 targets," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 8, pages 175-223, Edward Elgar Publishing.
    47. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
    48. Wadud, Zia, 2016. "Diesel demand in the road freight sector in the UK: Estimates for different vehicle types," Applied Energy, Elsevier, vol. 165(C), pages 849-857.
    49. Tsamboulas, Dimitrios & Vrenken, Huub & Lekka, Anna-Maria, 2007. "Assessment of a transport policy potential for intermodal mode shift on a European scale," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 715-733, October.
    50. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    51. Anson, Sam & Turner, Karen, 2009. "Rebound and disinvestment effects in refined oil consumption and supply resulting from an increase in energy efficiency in the Scottish commercial transport sector," Energy Policy, Elsevier, vol. 37(9), pages 3608-3620, September.
    52. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    2. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    3. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    4. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    5. Manuel Frondel & Colin Vance, 2018. "Drivers’ response to fuel taxes and efficiency standards: evidence from Germany," Transportation, Springer, vol. 45(3), pages 989-1001, May.
    6. Adha, Rishan & Hong, Cheng-Yih & Firmansyah, M. & Paranata, Ade, 2021. "Rebound effect with energy efficiency determinants: a two-stage analysis of residential electricity consumption in Indonesia," MPRA Paper 110444, University Library of Munich, Germany.
    7. Baležentis, Tomas & Butkus, Mindaugas & Štreimikienė, Dalia & Shen, Zhiyang, 2021. "Exploring the limits for increasing energy efficiency in the residential sector of the European Union: Insights from the rebound effect," Energy Policy, Elsevier, vol. 149(C).
    8. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    9. Amjadi, Golnaz & Lundgren, Tommy & Persson, Lars, 2018. "The Rebound Effect in Swedish Heavy Industry," Energy Economics, Elsevier, vol. 71(C), pages 140-148.
    10. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    11. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2014. "Measuring energy efficiency and rebound effects using a stochastic demand frontier approach: the US residential energy demand," Efficiency Series Papers 2014/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    12. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    13. Dahlqvist, Anna & Lundgren, Tommy & Marklund, Per-Olov, 2017. "Assessing the Rebound Effect in Energy Intensive Industries: A Factor Demand Model Approach with Asymmetric Price Response," Working Papers 150, National Institute of Economic Research.
    14. Llorca, Manuel & Baños, José & Somoza, José & Arbués, Pelayo, 2014. "A latent class approach for estimating energy demands and efficiency in transport: An application to Latin America and the Caribbean," Efficiency Series Papers 2014/04, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    15. Franco Ruzzenenti, 2018. "The Prism of Elasticity in Rebound Effect Modelling: An Insight from the Freight Transport Sector," Sustainability, MDPI, vol. 10(8), pages 1-13, August.
    16. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    17. Galvin, Ray, 2016. "Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation," Applied Energy, Elsevier, vol. 172(C), pages 207-216.
    18. Rabindra Nepal & Muhammad Indra al Irsyad & Tooraj Jamasb, 2021. "Sectoral Electricity Demand and Direct Rebound Effects inNew Zealand," The Energy Journal, , vol. 42(4), pages 153-174, July.
    19. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.

    More about this item

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • R4 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oeg:wpaper:2016/03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Luis Orea or David Roibas (email available below). General contact details of provider: https://edirc.repec.org/data/geovies.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.