IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i11p3816-3820.html
   My bibliography  Save this article

Grey forecasting model for CO2 emissions: A Taiwan study

Author

Listed:
  • Lin, Chiun-Sin
  • Liou, Fen-May
  • Huang, Chih-Pin

Abstract

Among the various greenhouse gases associated with climate change, CO2 is the most frequently implicated in global warming. The latest data from Carbon Monitoring for Action (CARMA) shows that the coal-fired power plant in Taichung, Taiwan emitted 39.7 million tons of CO2 in 2007 – the highest of any power plant in the world. Based on statistics from Energy International Administration, the annual CO2 emissions in Taiwan have increased 42% from 1997 until 2006. Taiwan has limited natural resources and relies heavily on imports to meet its energy needs, and the government must take serious measures control energy consumption to reduce CO2 emissions. Because the latest data was from 2009, this study applied the grey forecasting model to estimate future CO2 emissions in Taiwan from 2010 until 2012. Forecasts of CO2 emissions in this study show that the average residual error of the GM(1,1) was below 10%. Overall, the GM(1,1) predicted further increases in CO2 emissions over the next 3 years. Although Taiwan is not a member of the United Nations and is not bound by the Kyoto Protocol, the findings of this study provide a valuable reference with which the Taiwanese government could formulate measures to reduce CO2 emissions by curbing the unnecessary the consumption of energy.

Suggested Citation

  • Lin, Chiun-Sin & Liou, Fen-May & Huang, Chih-Pin, 2011. "Grey forecasting model for CO2 emissions: A Taiwan study," Applied Energy, Elsevier, vol. 88(11), pages 3816-3820.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:11:p:3816-3820
    DOI: 10.1016/j.apenergy.2011.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911003047
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Sue J. & Lu, I.J. & Lewis, Charles, 2007. "Grey relation performance correlations among economics, energy use and carbon dioxide emission in Taiwan," Energy Policy, Elsevier, vol. 35(3), pages 1948-1955, March.
    2. Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio & Minea, Alina A., 2010. "Analysis and forecasting of nonresidential electricity consumption in Romania," Applied Energy, Elsevier, vol. 87(11), pages 3584-3590, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Reza Lotfalipour & Mohammad Ali Falahi & Morteza Bastam, 2013. "Prediction of CO2 Emissions in Iran using Grey and ARIMA Models," International Journal of Energy Economics and Policy, Econjournals, vol. 3(3), pages 229-237.
    2. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    3. A. Azadeh & M. Saberi & A. Gitiforouz, 2013. "An integrated fuzzy mathematical model and principal component analysis algorithm for forecasting uncertain trends of electricity consumption," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(4), pages 2163-2176, June.
    4. Chou, Kuei Tien & Liou, Hwa Meei, 2012. "Analysis on energy intensive industries under Taiwan's climate change policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2631-2642.
    5. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    6. Liou, Hwa Meei, 2011. "A comparison of the legislative framework and policies in Taiwan's Four GHG reduction acts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1723-1747, May.
    7. Zhang, Chi & Zhou, Kaile & Yang, Shanlin & Shao, Zhen, 2017. "On electricity consumption and economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 353-368.
    8. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    9. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    10. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    11. Chien-Chi Lin & Chih-Ming Dong, 2023. "Exploring Consumers’ Purchase Intention on Energy-Efficient Home Appliances: Integrating the Theory of Planned Behavior, Perceived Value Theory, and Environmental Awareness," Energies, MDPI, vol. 16(6), pages 1-16, March.
    12. Mergani A. Khairalla & Xu Ning & Nashat T. AL-Jallad & Musaab O. El-Faroug, 2018. "Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model," Energies, MDPI, vol. 11(6), pages 1-21, June.
    13. Tian, Lixin & Jin, Rulei, 2012. "Theoretical exploration of carbon emissions dynamic evolutionary system and evolutionary scenario analysis," Energy, Elsevier, vol. 40(1), pages 376-386.
    14. Sadri, A. & Ardehali, M.M. & Amirnekooei, K., 2014. "General procedure for long-term energy-environmental planning for transportation sector of developing countries with limited data based on LEAP (long-range energy alternative planning) and EnergyPLAN," Energy, Elsevier, vol. 77(C), pages 831-843.
    15. Bilgili, Mehmet & Pinar, Engin, 2023. "Gross electricity consumption forecasting using LSTM and SARIMA approaches: A case study of Türkiye," Energy, Elsevier, vol. 284(C).
    16. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Gas and electricity demand in Spanish manufacturing industries: An analysis using homogeneous and heterogeneous estimators," Utilities Policy, Elsevier, vol. 45(C), pages 45-60.
    17. Mehmet Fatih Bayramoglu, 2016. "Future Electricity Demand of the Emerging European Countries and the CIS Countries," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 5(6), pages 15-23, October.
    18. Nafidi, A. & Gutiérrez, R. & Gutiérrez-Sánchez, R. & Ramos-Ábalos, E. & El Hachimi, S., 2016. "Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors," Energy, Elsevier, vol. 113(C), pages 309-318.
    19. Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.
    20. Tuncay Özcan, 2017. "Application of Seasonal and Multivariable Grey Prediction Models for Short-Term Load Forecasting," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 5(2), pages 329-338, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:11:p:3816-3820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.