IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp1118-1129.html
   My bibliography  Save this article

Multi-field coupled modeling of metal hydride hydrogen storage: A resistance atlas for H2 absorption reaction and heat-mass transport

Author

Listed:
  • Wang, Ke
  • Chen, Wei
  • Li, Lu

Abstract

Metal hydride hydrogen storage (MHHS) is an efficient technology to raise the hydrogen storage level. Currently, insight into the interaction between reaction and heat-mass transfer to achieve excellent storage performance is still a pressing issue. Therefore, in a specific example of LaNi5, this work adopted a transient multi-field coupling model for the hydrogen storage reactor to investigate the reaction-transport resistance characteristics, as well as the reaction heat management and enhancement strategy. According to the investigation, the operating parameters (such as temperature, pressure and porosity) have significant influences on the absorption reaction evolution. When the temperature increases from 55 °C to 65 °C, the saturated hydrogen absorption capacity decreases from 5.28 to 1.76. When the pressure decreases from 1.6 MPa to 0.4 MPa, the reaction evolution time will increase from 42.8 min to 121.6 min, the growth rate was 64.8%. Large porosity also contributes to reaction rate and reduces the average temperature of the reaction bed (RB). With external cooling measures, the absorption evolution can be significantly boosted. In addition, a general resistance atlas capable of clarifying the reaction and heat-mass transport characteristic is drawn. According to the characters of reaction resistance Rr, heat resistance Rh (including conduction R(lλ) and convection R(1h)) and flow resistance (Rf), the hydrogen absorption evolution is distinctly divided into four zones, among which the Rh dominating zones is the most remarkable that means the heat management and heat transfer enhancement still retain lots of margin for raising the H2 absorption evolution. The performance tuning limit is also presented in the atlas. Currently, focusing on internal-conduction and external-convection enhancement for the reactor design is quite effective and efficient in improving MHHS performance.

Suggested Citation

  • Wang, Ke & Chen, Wei & Li, Lu, 2022. "Multi-field coupled modeling of metal hydride hydrogen storage: A resistance atlas for H2 absorption reaction and heat-mass transport," Renewable Energy, Elsevier, vol. 187(C), pages 1118-1129.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:1118-1129
    DOI: 10.1016/j.renene.2022.01.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812200129X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    2. Bhogilla, Satya Sekhar, 2021. "Numerical simulation of metal hydride based thermal energy storage system for concentrating solar power plants," Renewable Energy, Elsevier, vol. 172(C), pages 1013-1020.
    3. Gkanas, Evangelos I. & Khzouz, Martin, 2017. "Numerical analysis of candidate materials for multi-stage metal hydride hydrogen compression processes," Renewable Energy, Elsevier, vol. 111(C), pages 484-493.
    4. Corgnale, Claudio & Hardy, Bruce & Chahine, Richard & Cossement, Daniel, 2018. "Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems," Applied Energy, Elsevier, vol. 213(C), pages 426-434.
    5. Wang, Di & Wang, Yuqi & Huang, Zhuonan & Yang, Fusheng & Wu, Zhen & Zheng, Lan & Wu, Le & Zhang, Zaoxiao, 2019. "Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor," Energy, Elsevier, vol. 173(C), pages 443-456.
    6. Wu, Zhen & Yang, Fusheng & Zhang, Zaoxiao & Bao, Zewei, 2014. "Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design," Applied Energy, Elsevier, vol. 130(C), pages 712-722.
    7. Lewis, Swaraj D. & Chippar, Purushothama, 2020. "Numerical investigation of hydrogen absorption in a metal hydride reactor with embedded embossed plate heat exchanger," Energy, Elsevier, vol. 194(C).
    8. Mazloomi, Kaveh & Gomes, Chandima, 2012. "Hydrogen as an energy carrier: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3024-3033.
    9. Kasaeian, Alibakhsh & Bellos, Evangelos & Shamaeizadeh, Armin & Tzivanidis, Christos, 2020. "Solar-driven polygeneration systems: Recent progress and outlook," Applied Energy, Elsevier, vol. 264(C).
    10. Hassan, I.A. & Ramadan, Haitham S. & Saleh, Mohamed A. & Hissel, Daniel, 2021. "Hydrogen storage technologies for stationary and mobile applications: Review, analysis and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishna, K. Venkata & Kanti, Praveen Kumar & Maiya, M.P., 2024. "A novel fin efficiency concept to optimize solid state hydrogen storage reactor," Energy, Elsevier, vol. 288(C).
    2. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    3. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    4. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    5. Lin, Xi & Zhu, Qi & Leng, Haiyan & Yang, Hongguang & Lyu, Tao & Li, Qian, 2019. "Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank," Applied Energy, Elsevier, vol. 250(C), pages 1065-1072.
    6. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels," Energy, Elsevier, vol. 232(C).
    7. Zheng, Shuaishuai & Wang, Yuqi & Wang, Di & Guan, Sinan & Liu, Ying & Wang, Feng & Zheng, Lan & Wu, Le & Gao, Xiong & Zhang, Zaoxiao, 2023. "Design and performance study on the primary & secondary helical-tube reactor," Energy, Elsevier, vol. 263(PD).
    8. Ye, Yang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials," Applied Energy, Elsevier, vol. 299(C).
    9. Lewis, Swaraj D. & Chippar, Purushothama, 2020. "Numerical investigation of hydrogen absorption in a metal hydride reactor with embedded embossed plate heat exchanger," Energy, Elsevier, vol. 194(C).
    10. Mu Chai & Jiahui Tan & Lingwei Gao & Zhenan Liu & Yong Chen & Kuanfang He & Mian Jiang, 2022. "Effects of Different Heat Transfer Conditions on the Hydrogen Desorption Performance of a Metal Hydride Hydrogen Storage Tank," Energies, MDPI, vol. 15(22), pages 1-16, November.
    11. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Wang, Di & Wang, Yuqi & Huang, Zhuonan & Yang, Fusheng & Wu, Zhen & Zheng, Lan & Wu, Le & Zhang, Zaoxiao, 2019. "Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor," Energy, Elsevier, vol. 173(C), pages 443-456.
    13. Asna Ashari, Parsa & Blind, Knut & Koch, Claudia, 2023. "Knowledge and technology transfer via publications, patents, standards: Exploring the hydrogen technological innovation system," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    14. Lesmana, Luthfan Adhy & Aziz, Muhammad, 2023. "Adoption of triply periodic minimal surface structure for effective metal hydride-based hydrogen storage," Energy, Elsevier, vol. 262(PA).
    15. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Dai, Zhou-Qiao & Yang, Fu-Sheng, 2022. "Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device," Energy, Elsevier, vol. 243(C).
    16. Ye, Yang & Zhu, Hongxing & Cheng, Honghui & Miao, Hong & Ding, Jing & Wang, Weilong, 2023. "Performance optimization of metal hydride hydrogen storage reactors based on PCM thermal management," Applied Energy, Elsevier, vol. 338(C).
    17. Sera Ayten Cetinkaya & Tacettin Disli & Gamze Soyturk & Onder Kizilkan & C. Ozgur Colpan, 2022. "A Review on Thermal Coupling of Metal Hydride Storage Tanks with Fuel Cells and Electrolyzers," Energies, MDPI, vol. 16(1), pages 1-23, December.
    18. Zhang, Tongtong & Uratani, Joao & Huang, Yixuan & Xu, Lejin & Griffiths, Steve & Ding, Yulong, 2023. "Hydrogen liquefaction and storage: Recent progress and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    19. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2022. "Performance improvement of metal hydride hydrogen storage tanks by using phase change materials," Applied Energy, Elsevier, vol. 320(C).
    20. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:1118-1129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.