IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8375-d967788.html
   My bibliography  Save this article

Effects of Different Heat Transfer Conditions on the Hydrogen Desorption Performance of a Metal Hydride Hydrogen Storage Tank

Author

Listed:
  • Mu Chai

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

  • Jiahui Tan

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

  • Lingwei Gao

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

  • Zhenan Liu

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

  • Yong Chen

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

  • Kuanfang He

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

  • Mian Jiang

    (School of Mechatronic Engineering and Automation, Foshan University, Foshan 528225, China)

Abstract

To investigate the influence of thermal effects on the hydrogen desorption performance of the metal hydride hydrogen storage system, a two-dimensional numerical model was established based on a small metal hydride hydrogen storage tank, and its accuracy was verified by the temperature variations in the reaction zone of the hydrogen storage tank during hydrogen desorption. In addition, the influence of the heat transfer medium on the heat and mass transfer performance of the hydrogen desorption reaction was analyzed. An external heat transfer bath was added to simulate the thermal effect of the model during the hydrogen desorption reaction. The temperature and type of heat transfer medium in the heat transfer bath were modified, and the temperature and reaction fraction variations in each zone of the hydrogen storage model were analyzed. The results showed that under heat transfer water flow, the reaction rate in the center region of the hydrogen storage tank was gradually lower than that in the wall region. The higher the temperature of water flow, the shorter the total time required for the hydrogen desorption reaction and the shortening amplitude is reduced. The variations in the temperature and hydrogen storage capacity during hydrogen desorption were similar, with water and oil as the heat transfer medium, under the same flow rate and heat transfer temperature, however, the heat transfer time and hydrogen desorption time of water were about 10% and 5% shorter than that of oil, respectively. When the air was used as the heat transfer medium, the heat transfer rate of the air convection in the channel was lower than the heat transfer rate of the tank wall, reducing the temperature difference between the air and alloy on both sides of the wall, decreasing heat transfer efficiency, and significantly prolonging the time required for hydrogen desorption.

Suggested Citation

  • Mu Chai & Jiahui Tan & Lingwei Gao & Zhenan Liu & Yong Chen & Kuanfang He & Mian Jiang, 2022. "Effects of Different Heat Transfer Conditions on the Hydrogen Desorption Performance of a Metal Hydride Hydrogen Storage Tank," Energies, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8375-:d:967788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8375/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8375/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Corgnale, Claudio & Hardy, Bruce & Chahine, Richard & Cossement, Daniel, 2018. "Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems," Applied Energy, Elsevier, vol. 213(C), pages 426-434.
    2. Wang, Di & Wang, Yuqi & Huang, Zhuonan & Yang, Fusheng & Wu, Zhen & Zheng, Lan & Wu, Le & Zhang, Zaoxiao, 2019. "Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor," Energy, Elsevier, vol. 173(C), pages 443-456.
    3. Agostini, Alessandro & Belmonte, Nadia & Masala, Alessio & Hu, Jianjiang & Rizzi, Paola & Fichtner, Maximilian & Moretto, Pietro & Luetto, Carlo & Sgroi, Mauro & Baricco, Marcello, 2018. "Role of hydrogen tanks in the life cycle assessment of fuel cell-based auxiliary power units," Applied Energy, Elsevier, vol. 215(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    2. Wang, Ke & Chen, Wei & Li, Lu, 2022. "Multi-field coupled modeling of metal hydride hydrogen storage: A resistance atlas for H2 absorption reaction and heat-mass transport," Renewable Energy, Elsevier, vol. 187(C), pages 1118-1129.
    3. Xiao, Runfeng & Tian, Gui & Hou, Yu & Chen, Shuangtao & Cheng, Cheng & Chen, Liang, 2020. "Effects of cooling-recovery venting on the performance of cryo-compressed hydrogen storage for automotive applications," Applied Energy, Elsevier, vol. 269(C).
    4. Yadav, Deepak & Banerjee, Rangan, 2020. "Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process," Applied Energy, Elsevier, vol. 262(C).
    5. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    6. Erika Michela Dematteis & Jussara Barale & Marta Corno & Alessandro Sciullo & Marcello Baricco & Paola Rizzi, 2021. "Solid-State Hydrogen Storage Systems and the Relevance of a Gender Perspective," Energies, MDPI, vol. 14(19), pages 1-26, September.
    7. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    8. Damien Guilbert & Gianpaolo Vitale, 2021. "Hydrogen as a Clean and Sustainable Energy Vector for Global Transition from Fossil-Based to Zero-Carbon," Clean Technol., MDPI, vol. 3(4), pages 1-29, December.
    9. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    10. Krishna, K. Venkata & Kanti, Praveen Kumar & Maiya, M.P., 2024. "A novel fin efficiency concept to optimize solid state hydrogen storage reactor," Energy, Elsevier, vol. 288(C).
    11. Lewis, Swaraj D. & Chippar, Purushothama, 2020. "Numerical investigation of hydrogen absorption in a metal hydride reactor with embedded embossed plate heat exchanger," Energy, Elsevier, vol. 194(C).
    12. Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
    13. Inkeri, Eero & Tynjälä, Tero & Karjunen, Hannu, 2021. "Significance of methanation reactor dynamics on the annual efficiency of power-to-gas -system," Renewable Energy, Elsevier, vol. 163(C), pages 1113-1126.
    14. Lin, Xi & Zhu, Qi & Leng, Haiyan & Yang, Hongguang & Lyu, Tao & Li, Qian, 2019. "Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank," Applied Energy, Elsevier, vol. 250(C), pages 1065-1072.
    15. Wang, Di & Wang, Yuqi & Huang, Zhuonan & Yang, Fusheng & Wu, Zhen & Zheng, Lan & Wu, Le & Zhang, Zaoxiao, 2019. "Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor," Energy, Elsevier, vol. 173(C), pages 443-456.
    16. Corgnale, Claudio & Hardy, Bruce & Chahine, Richard & Zacharia, Renju & Cossement, Daniel, 2019. "Hydrogen storage in a two-liter adsorbent prototype tank for fuel cell driven vehicles," Applied Energy, Elsevier, vol. 250(C), pages 333-343.
    17. Papakokkinos, Giorgos & Castro, Jesús & López, Joan & Oliva, Assensi, 2019. "A generalized computational model for the simulation of adsorption packed bed reactors – Parametric study of five reactor geometries for cooling applications," Applied Energy, Elsevier, vol. 235(C), pages 409-427.
    18. Viviana Cigolotti & Matteo Genovese & Petronilla Fragiacomo, 2021. "Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems," Energies, MDPI, vol. 14(16), pages 1-28, August.
    19. Annika Tampe & Kristina Höse & Uwe Götze, 2023. "Sustainability-Oriented Assessment of Fuel Cells—A Literature Review," Sustainability, MDPI, vol. 15(19), pages 1-33, September.
    20. Robert Garner & Zahir Dehouche, 2023. "Optimal Design and Analysis of a Hybrid Hydrogen Energy Storage System for an Island-Based Renewable Energy Community," Energies, MDPI, vol. 16(21), pages 1-23, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8375-:d:967788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.