IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124010218.html
   My bibliography  Save this article

Effective thermal conductivity of LaNi5 powder beds for hydrogen storage: Measurement and theoretical analysis

Author

Listed:
  • Mou, Xiaofeng
  • Zhou, Wei
  • Bao, Zewei
  • Huang, Weixing

Abstract

Accurately measuring and analyzing the effective thermal conductivity of metal hydride beds is critical to design the structure of solid-state hydrogen storage tanks. On the basis of the steady-state radial heat flow method, a measurement cell of effective thermal conductivity was manufactured. The effective thermal conductivities of nonactivated and activated LaNi5 powder beds were measured in helium, nitrogen, and argon atmospheres with the temperature changing from 20 to 60 °C and pressure from 0.1 to 4.0 MPa. Then, the effective thermal conductivities were further analyzed using the Zehner–Schlünder–Damköhler model. Results show that the effective thermal conductivities can be enhanced by increasing gas thermal conductivity, gas pressure, and bed temperature. In addition, the effective thermal conductivities can be accurately predicted using the modified Zehner–Schlünder–Damköhler model considering the Smoluchowski effect (error < ± 5 %). With the use of the modified Zehner–Schlünder–Damköhler model, the contributions of different heat transfer pathways to the entire heat transfer of LaNi5 powder beds were analyzed. Approximately 70 %–91 % of the effective thermal conductivity of LaNi5 powder beds is contributed by the conduction of the particle–gas–particle pathway.

Suggested Citation

  • Mou, Xiaofeng & Zhou, Wei & Bao, Zewei & Huang, Weixing, 2024. "Effective thermal conductivity of LaNi5 powder beds for hydrogen storage: Measurement and theoretical analysis," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010218
    DOI: 10.1016/j.renene.2024.120953
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124010218
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120953?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.