IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124014460.html
   My bibliography  Save this article

Performance improvement of a U-tube heat exchanger based hydrogen storage reactor by phase change materials

Author

Listed:
  • Yang, Ye
  • Yang, Wei
  • Zhang, Ziyang
  • Liu, Jingjing
  • Yan, Kai
  • Cheng, Honghui

Abstract

Solid-state hydrogen storage technology using metal hydrides as carriers has great application prospects. This study aims to optimize the heat transfer resistance and absorption kinetics issues encountered in practical applications of LaNi5-H2 storage materials in storage reactors. A mathematical model for the hydrogen absorption process in the reactors based on U-tube and straight-tube heat exchangers was built, and the advantages of U-tube structure and the flow characteristics of the heat transfer fluid on its heat transfer and absorption performance were analyzed. To further enhance the U-tube based reactor's performance, phase change materials (PCM) were subsequently introduced as an auxiliary heat transfer medium, while the amount of PCM and the thermal conductivity of the reaction bed were optimized. The results showed that the appropriate PCM dosage could overcome the inherent defects of the U-tube heat exchanger and significantly improve heat dissipation and reaction rates of the reactor, and the H2 absorption completion time was shortened by 1.4 times. In addition, the increased thermal conductivity of reaction beds is equally important for the enhancement of heat transfer and absorption rate. Nevertheless, further increase of PCM's thermal conductivity has a limited effect on the improvement of the performance.

Suggested Citation

  • Yang, Ye & Yang, Wei & Zhang, Ziyang & Liu, Jingjing & Yan, Kai & Cheng, Honghui, 2024. "Performance improvement of a U-tube heat exchanger based hydrogen storage reactor by phase change materials," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014460
    DOI: 10.1016/j.renene.2024.121378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014460
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.