IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics0360544220300499.html
   My bibliography  Save this article

Numerical investigation of hydrogen absorption in a metal hydride reactor with embedded embossed plate heat exchanger

Author

Listed:
  • Lewis, Swaraj D.
  • Chippar, Purushothama

Abstract

In this paper, a Metal Hydride (MH) reactor integrated with an Embossed Plate Heat Exchanger (EPHX) was studied for the first time for its hydrogen absorption rate and thermal performance. A detailed numerical analysis of the various flow-field designs in the EPHX such as parallel-type, pin-type, and serpentine types (vertical and horizontal) was performed. The serpentine flow-field EPHX presented better heat transfer and faster hydrogen storage ability. Also, it showed more uniform temperature distribution in the bed compared with parallel and pin-type flow-fields. Next, the vertical-serpentine flow-field EPHX was compared with the most commonly used Helical Coil Heat Exchanger (HCHX) and the outcomes were discussed. Although, EPHX showed slightly lower overall heat removal from the reactor, it presented similar hydrogen absorption rate and remarkable uniformity in temperature distribution in the reactor.

Suggested Citation

  • Lewis, Swaraj D. & Chippar, Purushothama, 2020. "Numerical investigation of hydrogen absorption in a metal hydride reactor with embedded embossed plate heat exchanger," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300499
    DOI: 10.1016/j.energy.2020.116942
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220300499
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.116942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corgnale, Claudio & Hardy, Bruce & Chahine, Richard & Cossement, Daniel, 2018. "Hydrogen desorption using honeycomb finned heat exchangers integrated in adsorbent storage systems," Applied Energy, Elsevier, vol. 213(C), pages 426-434.
    2. Kou, Huaqin & Huang, Zhiyong & Luo, Wenhua & Sang, Ge & Meng, Daqiao & Luo, Deli & Zhang, Guanghui & Chen, Hao & Zhou, Ying & Hu, Changwen, 2015. "Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes," Applied Energy, Elsevier, vol. 145(C), pages 27-35.
    3. Lin, Chih-Kuang & Chen, Yen-Chun, 2012. "Effects of cyclic hydriding–dehydriding reactions of LaNi5 on the thin-wall deformation of metal hydride storage vessels with various configurations," Renewable Energy, Elsevier, vol. 48(C), pages 404-410.
    4. Chung, C.A. & Yang, Su-Wen & Yang, Chien-Yuh & Hsu, Che-Weu & Chiu, Pai-Yuh, 2013. "Experimental study on the hydrogen charge and discharge rates of metal hydride tanks using heat pipes to enhance heat transfer," Applied Energy, Elsevier, vol. 103(C), pages 581-587.
    5. Wu, Zhen & Yang, Fusheng & Zhang, Zaoxiao & Bao, Zewei, 2014. "Magnesium based metal hydride reactor incorporating helical coil heat exchanger: Simulation study and optimal design," Applied Energy, Elsevier, vol. 130(C), pages 712-722.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suárez, S.H. & Chabane, D. & N'Diaye, A. & Ait-Amirat, Y. & Djerdir, A., 2022. "Static and dynamic characterization of metal hydride tanks for energy management applications," Renewable Energy, Elsevier, vol. 191(C), pages 59-70.
    2. Zheng, Shuaishuai & Wang, Yuqi & Wang, Di & Guan, Sinan & Liu, Ying & Wang, Feng & Zheng, Lan & Wu, Le & Gao, Xiong & Zhang, Zaoxiao, 2023. "Design and performance study on the primary & secondary helical-tube reactor," Energy, Elsevier, vol. 263(PD).
    3. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    4. Min Liu & Bo Zhao & Yaze Li & Zhen Wang & Xuesong Zhang & Liang Tong & Tianqi Yang & Xuefang Li & Jinsheng Xiao, 2023. "Parametric Study on Fin Structure and Injection Tube in Metal Hydride Tank Packed with LaNi 5 Alloy for Efficient and Safe Hydrogen Storage," Sustainability, MDPI, vol. 15(12), pages 1-13, June.
    5. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels," Energy, Elsevier, vol. 232(C).
    6. Jiahui Tan & Mu Chai & Kuanfang He & Yong Chen, 2022. "Numerical Simulation on Heating Effects during Hydrogen Absorption in Metal Hydride Systems for Hydrogen Storage," Energies, MDPI, vol. 15(7), pages 1-17, April.
    7. Krishna, K. Venkata & Kanti, Praveen Kumar & Maiya, M.P., 2024. "A novel fin efficiency concept to optimize solid state hydrogen storage reactor," Energy, Elsevier, vol. 288(C).
    8. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Dai, Zhou-Qiao & Yang, Fu-Sheng, 2022. "Parametric optimization of coupled fin-metal foam metal hydride bed towards enhanced hydrogen absorption performance of metal hydride hydrogen storage device," Energy, Elsevier, vol. 243(C).
    9. Wang, Ke & Chen, Wei & Li, Lu, 2022. "Multi-field coupled modeling of metal hydride hydrogen storage: A resistance atlas for H2 absorption reaction and heat-mass transport," Renewable Energy, Elsevier, vol. 187(C), pages 1118-1129.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    2. Wang, Di & Wang, Yuqi & Huang, Zhuonan & Yang, Fusheng & Wu, Zhen & Zheng, Lan & Wu, Le & Zhang, Zaoxiao, 2019. "Design optimization and sensitivity analysis of the radiation mini-channel metal hydride reactor," Energy, Elsevier, vol. 173(C), pages 443-456.
    3. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank," Applied Energy, Elsevier, vol. 278(C).
    4. Ye, Yang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials," Applied Energy, Elsevier, vol. 299(C).
    5. Lin, Xi & Zhu, Qi & Leng, Haiyan & Yang, Hongguang & Lyu, Tao & Li, Qian, 2019. "Numerical analysis of the effects of particle radius and porosity on hydrogen absorption performances in metal hydride tank," Applied Energy, Elsevier, vol. 250(C), pages 1065-1072.
    6. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Hydrogen absorption performance investigation of a cylindrical MH reactor with rectangle heat exchange channels," Energy, Elsevier, vol. 232(C).
    7. Kou, Huaqin & Huang, Zhiyong & Luo, Wenhua & Sang, Ge & Meng, Daqiao & Luo, Deli & Zhang, Guanghui & Chen, Hao & Zhou, Ying & Hu, Changwen, 2015. "Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes," Applied Energy, Elsevier, vol. 145(C), pages 27-35.
    8. Wang, Ke & Chen, Wei & Li, Lu, 2022. "Multi-field coupled modeling of metal hydride hydrogen storage: A resistance atlas for H2 absorption reaction and heat-mass transport," Renewable Energy, Elsevier, vol. 187(C), pages 1118-1129.
    9. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2022. "Performance improvement of metal hydride hydrogen storage tanks by using phase change materials," Applied Energy, Elsevier, vol. 320(C).
    10. Dong, Xiaofei & Zhao, Hongxia & Li, Hailong & Fucucci, Giacomo & Zheng, Qingrong & Zhao, Honghua & Pu, Jinhuan, 2024. "A novel design of a metal hydride reactor integrated with phase change material for H2 storage," Applied Energy, Elsevier, vol. 367(C).
    11. Kim, Sung Han & Miesse, Craig M. & Lee, Hee Bum & Chang, Ik Whang & Hwang, Yong Sheen & Jang, Jae Hyuk & Cha, Suk Won, 2014. "Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone," Applied Energy, Elsevier, vol. 134(C), pages 382-391.
    12. Bai, Xiao-Shuai & Yang, Wei-Wei & Tang, Xin-Yuan & Yang, Fu-Sheng & Jiao, Yu-Hang & Yang, Yu, 2021. "Optimization of tree-shaped fin structures towards enhanced absorption performance of metal hydride hydrogen storage device: A numerical study," Energy, Elsevier, vol. 220(C).
    13. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    14. Ruizhe Ran & Jing Wang & Fusheng Yang & Rahmatjan Imin, 2024. "Fast Design and Numerical Simulation of a Metal Hydride Reactor Embedded in a Conventional Shell-and-Tube Heat Exchanger," Energies, MDPI, vol. 17(3), pages 1-18, February.
    15. Krishna, K. Venkata & Kanti, Praveen Kumar & Maiya, M.P., 2024. "A novel fin efficiency concept to optimize solid state hydrogen storage reactor," Energy, Elsevier, vol. 288(C).
    16. Mu Chai & Jiahui Tan & Lingwei Gao & Zhenan Liu & Yong Chen & Kuanfang He & Mian Jiang, 2022. "Effects of Different Heat Transfer Conditions on the Hydrogen Desorption Performance of a Metal Hydride Hydrogen Storage Tank," Energies, MDPI, vol. 15(22), pages 1-16, November.
    17. Liu, Yang & Wang, Hongxia & Ayub, Iqra & Yang, Fusheng & Wu, Zhen & Zhang, Zaoxiao, 2021. "A variable cross-section annular fins type metal hydride reactor for improving the phenomenon of inhomogeneous reaction in the thermal energy storage processes," Applied Energy, Elsevier, vol. 295(C).
    18. Xiao, Jinsheng & Tong, Liang & Bénard, Pierre & Chahine, Richard, 2020. "Thermodynamic analysis for hydriding-dehydriding cycle of metal hydride system," Energy, Elsevier, vol. 191(C).
    19. Corgnale, Claudio & Hardy, Bruce & Chahine, Richard & Zacharia, Renju & Cossement, Daniel, 2019. "Hydrogen storage in a two-liter adsorbent prototype tank for fuel cell driven vehicles," Applied Energy, Elsevier, vol. 250(C), pages 333-343.
    20. Wang, Feng & Li, Rongfeng & Ding, Cuiping & Tang, Wukui & Wang, Yibo & Xu, Shimeng & Yu, Ronghai & Wang, Zhongmin, 2017. "Enhanced hydrogen storage properties of ZrCo alloy decorated with flower-like Pd particles," Energy, Elsevier, vol. 139(C), pages 8-17.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s0360544220300499. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.