IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v183y2022icp820-829.html
   My bibliography  Save this article

Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management

Author

Listed:
  • Zhang, Wei
  • Li, Zhenlin
  • Zhang, Canying
  • Lin, Yusheng
  • Zhu, Haitao
  • Meng, Zhaoguo
  • Wu, Daxiong

Abstract

Volumetric solar steam generation has attracted substantial interest due to its low cost, minimum carbon footprint and wide application in many areas including clean water production, desalination, and wastewater treatment. However, the efficiency of volumetric solar evaporation is still low and there is an urgent need to investigate the fundamental of the limitation of low efficiency and find a new strategy to improve the solar evaporation efficiency. In the current work, antimony doped tin oxide@carbon (ATO@C) nanofluids were prepared by a hydrothermal approach. The ATO@C nanofluids exhibit broad-band and high absorption in the solar spectrum due to the complementary effect of C (in visible region) and ATO (in the near infrared region). ATO@C nanofluids of 0.3 wt% could harvest 99.9% of the incident solar energy within 1 cm penetration distance. The photothermal conversion efficiency is 97.8%. The coupling relationship between the solar harvesting and the energy distribution was revealed. Increasing mass fraction and reducing thickness can localize the heat in the surface layer of nanofluids and thus minimize the energy consumption in heating water (internal energy) and therefore improve the solar evaporation efficiency. A high evaporation efficiency of 88.6% was achieved in this way.

Suggested Citation

  • Zhang, Wei & Li, Zhenlin & Zhang, Canying & Lin, Yusheng & Zhu, Haitao & Meng, Zhaoguo & Wu, Daxiong, 2022. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management," Renewable Energy, Elsevier, vol. 183(C), pages 820-829.
  • Handle: RePEc:eee:renene:v:183:y:2022:i:c:p:820-829
    DOI: 10.1016/j.renene.2021.11.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121016360
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nourafkan, E. & Asachi, M. & Jin, H. & Wen, D. & Ahmed, W., 2019. "Stability and photo-thermal conversion performance of binary nanofluids for solar absorption refrigeration systems," Renewable Energy, Elsevier, vol. 140(C), pages 264-273.
    2. Jin, Xin & Lin, Guiping & Zeiny, Aimen & Jin, Haichuan & Bai, Lizhan & Wen, Dongsheng, 2019. "Solar photothermal conversion characteristics of hybrid nanofluids: An experimental and numerical study," Renewable Energy, Elsevier, vol. 141(C), pages 937-949.
    3. Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
    4. Zeiny, Aimen & Jin, Haichuan & Lin, Guiping & Song, Pengxiang & Wen, Dongsheng, 2018. "Solar evaporation via nanofluids: A comparative study," Renewable Energy, Elsevier, vol. 122(C), pages 443-454.
    5. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    6. Liu, Xing & Wang, Xinzhi & Huang, Jian & Cheng, Gong & He, Yurong, 2018. "Volumetric solar steam generation enhanced by reduced graphene oxide nanofluid," Applied Energy, Elsevier, vol. 220(C), pages 302-312.
    7. Kuzmenkov, D.M. & Delov, M.I. & Zeynalyan, K. & Struchalin, P.G. & Alyaev, S. & He, Y. & Kutsenko, K.V. & Balakin, B.V., 2020. "Solar steam generation in fine dispersions of graphite particles," Renewable Energy, Elsevier, vol. 161(C), pages 265-277.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Haotuo & Ma, Zenghong & Zhang, Chenggui & Ai, Qing & Xie, Ming & Wu, Xiaohu, 2023. "Optical properties of hollow plasmonic nanopillars for efficient solar photothermal conversion," Renewable Energy, Elsevier, vol. 208(C), pages 251-262.
    2. Zhang, Wei & Zheng, Tuo & Zhu, Haiguang & Wu, Daxiong & Zhang, Canying & Zhu, Haitao, 2022. "Insight into the role of the channel in photothermal materials for solar interfacial water evaporation," Renewable Energy, Elsevier, vol. 193(C), pages 706-714.
    3. Hongxia Cao & Dong Wang & Zeyu Sun & Yanyan Zhu, 2022. "In Situ Carbonized Polyvinyl Alcohol (PVA) Sponge by a Dehydration Reaction for Solar-Driven Interfacial Evaporation," Sustainability, MDPI, vol. 14(17), pages 1-11, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    2. Xin Jin & Guiping Lin & Haichuan Jin, 2021. "Experimental Investigations on Steam Generation in Nanofluids under Concentrated Solar Radiation," Energies, MDPI, vol. 14(13), pages 1-18, July.
    3. Xin Jin & Guiping Lin & Haichuan Jin & Zunru Fu & Haoyang Sun, 2021. "Experimental Research on the Selective Absorption of Solar Energy by Hybrid Nanofluids," Energies, MDPI, vol. 14(23), pages 1-18, December.
    4. Dmitrii M. Kuzmenkov & Pavel G. Struchalin & Andrey V. Olkhovskii & Vladimir S. Yunin & Kirill V. Kutsenko & Boris V. Balakin, 2021. "Solar-Driven Desalination Using Nanoparticles," Energies, MDPI, vol. 14(18), pages 1-11, September.
    5. Meng, Zhaoguo & Li, Zhenlin & Li, Yang & Zhang, Canying & Wang, Kongxiang & Yu, Wei & Wu, Daxiong & Zhu, Haitao & Li, Wei, 2022. "Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment," Energy, Elsevier, vol. 247(C).
    6. Ghafurian, Mohammad Mustafa & Malmir, Mohammad Reza & Akbari, Zohreh & Vafaei, Mohammad & Niazmand, Hamid & Goharshadi, Elaheh K. & Ebrahimi, Atefe & Mahian, Omid, 2022. "Interfacial solar steam generation by sawdust coated with W doped VO2," Energy, Elsevier, vol. 244(PB).
    7. Akkala, Siva Ram & Kaviti, Ajay Kumar & ArunKumar, T. & Sikarwar, Vineet Singh, 2021. "Progress on suspended nanostructured engineering materials powered solar distillation- a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
    9. Kazemian, Arash & Khatibi, Meysam & Ma, Tao & Peng, Jinqing & Hongxing, Yang, 2023. "A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells," Applied Energy, Elsevier, vol. 329(C).
    10. Ni, Song & Pan, Chin & Hibiki, Takashi & Zhao, Jiyun, 2024. "Applications of nucleate boiling in renewable energy and thermal management and recent advances in modeling——a review," Energy, Elsevier, vol. 289(C).
    11. Gong, Feng & Wang, Wenbin & Li, Hao & Xia, Dawei (David) & Dai, Qingwen & Wu, Xinlin & Wang, Mingzhou & Li, Jian & Papavassiliou, Dimitrios V. & Xiao, Rui, 2020. "Solid waste and graphite derived solar steam generator for highly-efficient and cost-effective water purification," Applied Energy, Elsevier, vol. 261(C).
    12. Kuzmenkov, D.M. & Delov, M.I. & Zeynalyan, K. & Struchalin, P.G. & Alyaev, S. & He, Y. & Kutsenko, K.V. & Balakin, B.V., 2020. "Solar steam generation in fine dispersions of graphite particles," Renewable Energy, Elsevier, vol. 161(C), pages 265-277.
    13. Shubo Liu & Yi Yang & Kuiyuan Ma & Haichuan Jin & Xin Jin, 2022. "Experimental Study of Pulsating Heat Pipes Filled with Nanofluids under the Irradiation of Solar Simulator," Energies, MDPI, vol. 15(23), pages 1-15, December.
    14. Zhang, Shaoliang & Liu, Shuli & Xu, Zhiqi & Chen, Hongkuan & Wang, Jihong & Li, Yongliang & Yar Khan, Sheher & Kumar, Mahesh, 2024. "Effect of the irradiation intensity on the photo-thermal conversion performance of composite phase change materials: An experimental approach," Renewable Energy, Elsevier, vol. 225(C).
    15. Wenxiong Xi & Mengyao Xu & Chaoyang Liu & Jian Liu, 2022. "Recent Developments of Heat Transfer Enhancement and Thermal Management Technology," Energies, MDPI, vol. 15(16), pages 1-3, August.
    16. Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
    17. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    18. Kulkarni, Vismay V. & Bhalla, Vishal & Garg, Kapil & Tyagi, Himanshu, 2021. "Hybrid nanoparticles-laden fluid based spiral solar collector: A proof-of-concept experimental study," Renewable Energy, Elsevier, vol. 179(C), pages 1360-1369.
    19. Su, Jinbu & Zhang, Pengkui & Yang, Rui & Wang, Boli & Zhao, Heng & Wang, Weike & Wang, Chengbing, 2022. "MXene-based flexible and washable photothermal fabrics for efficiently continuous solar-driven evaporation and desalination of seawater," Renewable Energy, Elsevier, vol. 195(C), pages 407-415.
    20. Sui, Zengguang & Zhai, Chong & Wu, Wei, 2022. "Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration," Renewable Energy, Elsevier, vol. 187(C), pages 109-122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:820-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.