IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124018871.html
   My bibliography  Save this article

Experimental study of electric field combined nanofluid to enhance vapor generation in the solar steam generator

Author

Listed:
  • Li, Chaofan
  • Liu, Dongzhi
  • Zhang, Yalei
  • Li, Shuangfei
  • He, Deqiang
  • Chen, Yanjun

Abstract

Volumetric solar steam generation has a wide range of applications in many fields such as electricity generation, water purification, seawater desalination, and wastewater treatment. However, the efficiency of volumetric evaporation using nanofluids as photothermal conversion materials is still low. In this paper, electric field is applied to the volumetric solar steam generation system to enhance steam generation efficiency by utilizing the effect of electric field on nanoparticle resuspension as well as the formation and escape of nanobubbles. The results show that the electric field promotes steam generation at high solar radiation intensities and the promotion is enhanced with the increase of voltage. The steam generation of 0.09 vol% TiN-water nanofluid at 10 kV and solar radiation intensity of 3 sun significantly increases by 21.71 % than that without electric field. Electric field provides an external force for the movement of nanobubble-particle complexes, accelerating the process of rise, fusion, and escape of nanobubbles, and accelerating the resuspension as well as upward and downward circulation of nanoparticles in the cavity. Thus, the vapor generation efficiency is enhanced. The research in this paper provides theoretical guidance to enhance vapor generation in the solar steam generator.

Suggested Citation

  • Li, Chaofan & Liu, Dongzhi & Zhang, Yalei & Li, Shuangfei & He, Deqiang & Chen, Yanjun, 2024. "Experimental study of electric field combined nanofluid to enhance vapor generation in the solar steam generator," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018871
    DOI: 10.1016/j.renene.2024.121819
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124018871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124018871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.