Experimental Research on the Selective Absorption of Solar Energy by Hybrid Nanofluids
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jin, Haichuan & Lin, Guiping & Zeiny, Aimen & Bai, Lizhan & Wen, Dongsheng, 2019. "Nanoparticle-based solar vapor generation: An experimental and numerical study," Energy, Elsevier, vol. 178(C), pages 447-459.
- Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
- Jin, Xin & Lin, Guiping & Zeiny, Aimen & Jin, Haichuan & Bai, Lizhan & Wen, Dongsheng, 2019. "Solar photothermal conversion characteristics of hybrid nanofluids: An experimental and numerical study," Renewable Energy, Elsevier, vol. 141(C), pages 937-949.
- Zeiny, Aimen & Jin, Haichuan & Lin, Guiping & Song, Pengxiang & Wen, Dongsheng, 2018. "Solar evaporation via nanofluids: A comparative study," Renewable Energy, Elsevier, vol. 122(C), pages 443-454.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ehab AlShamaileh & Iessa Sabbe Moosa & Heba Al-Fayyad & Bashar Lahlouh & Hussein A. Kazem & Qusay Abu-Afifeh & Bety S. Al-Saqarat & Muayad Esaifan & Imad Hamadneh, 2022. "Performance Comparison and Light Reflectance of Al, Cu, and Fe Metals in Direct Contact Flat Solar Heating Systems," Energies, MDPI, vol. 15(23), pages 1-15, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xin Jin & Guiping Lin & Haichuan Jin, 2021. "Experimental Investigations on Steam Generation in Nanofluids under Concentrated Solar Radiation," Energies, MDPI, vol. 14(13), pages 1-18, July.
- Zhang, Wei & Li, Zhenlin & Zhang, Canying & Lin, Yusheng & Zhu, Haitao & Meng, Zhaoguo & Wu, Daxiong, 2022. "Improvement of the efficiency of volumetric solar steam generation by enhanced solar harvesting and energy management," Renewable Energy, Elsevier, vol. 183(C), pages 820-829.
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
- Wang, Kongxiang & He, Yan & Kan, Ankang & Yu, Wei & Wang, Debing & Zhang, Liyie & Zhu, Guihua & Xie, Huaqing & She, Xiaohui, 2019. "Significant photothermal conversion enhancement of nanofluids induced by Rayleigh-Bénard convection for direct absorption solar collectors," Applied Energy, Elsevier, vol. 254(C).
- Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
- Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
- Kuzmenkov, D.M. & Delov, M.I. & Zeynalyan, K. & Struchalin, P.G. & Alyaev, S. & He, Y. & Kutsenko, K.V. & Balakin, B.V., 2020. "Solar steam generation in fine dispersions of graphite particles," Renewable Energy, Elsevier, vol. 161(C), pages 265-277.
- Shubo Liu & Yi Yang & Kuiyuan Ma & Haichuan Jin & Xin Jin, 2022. "Experimental Study of Pulsating Heat Pipes Filled with Nanofluids under the Irradiation of Solar Simulator," Energies, MDPI, vol. 15(23), pages 1-15, December.
- Wen, Jin & Chang, Qingchao & Zhu, Jishi & Cui, Rui & He, Cheng & Yan, Xinxing & Li, Xiaoke, 2023. "The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors," Renewable Energy, Elsevier, vol. 206(C), pages 676-685.
- Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
- Gupta, Varun Kumar & Kumar, Sanjay & Kukreja, Rajeev & Chander, Nikhil, 2023. "Experimental thermal performance investigation of a direct absorption solar collector using hybrid nanofluid of gold nanoparticles with natural extract of Azadirachta Indica leaves," Renewable Energy, Elsevier, vol. 202(C), pages 1021-1031.
- Ham, Jeonggyun & Shin, Yunchan & Cho, Honghyun, 2022. "Comparison of thermal performance between a surface and a volumetric absorption solar collector using water and Fe3O4 nanofluid," Energy, Elsevier, vol. 239(PC).
- Sharaf, Omar Z. & Al-Khateeb, Ashraf N. & Kyritsis, Dimitrios C. & Abu-Nada, Eiyad, 2019. "Energy and exergy analysis and optimization of low-flux direct absorption solar collectors (DASCs): Balancing power- and temperature-gain," Renewable Energy, Elsevier, vol. 133(C), pages 861-872.
- Kulkarni, Vismay V. & Bhalla, Vishal & Garg, Kapil & Tyagi, Himanshu, 2021. "Hybrid nanoparticles-laden fluid based spiral solar collector: A proof-of-concept experimental study," Renewable Energy, Elsevier, vol. 179(C), pages 1360-1369.
- Belekoukia, Meltiani & Kalamaras, Evangelos & Tan, Jeannie Z.Y. & Vilela, Filipe & Garcia, Susana & Maroto-Valer, M. Mercedes & Xuan, Jin, 2019. "Continuous flow-based laser-assisted plasmonic heating: A new approach for photothermal energy conversion and utilization," Applied Energy, Elsevier, vol. 247(C), pages 517-524.
- Meng, Zhaoguo & Li, Zhenlin & Li, Yang & Zhang, Canying & Wang, Kongxiang & Yu, Wei & Wu, Daxiong & Zhu, Haitao & Li, Wei, 2022. "Novel nanofluid based efficient solar vaporization systems with applications in desalination and wastewater treatment," Energy, Elsevier, vol. 247(C).
- Xu, Bin & Gan, Wen-tao & Wang, Yang-liang & Chen, Xing-ni & Fei, Yue & Pei, Gang, 2023. "Thermal performance of a novel Trombe wall integrated with direct absorption solar collector based on phase change slurry in winter," Renewable Energy, Elsevier, vol. 213(C), pages 246-258.
- Jin, Xin & Lin, Guiping & Zeiny, Aimen & Jin, Haichuan & Bai, Lizhan & Wen, Dongsheng, 2019. "Solar photothermal conversion characteristics of hybrid nanofluids: An experimental and numerical study," Renewable Energy, Elsevier, vol. 141(C), pages 937-949.
- Hu, Jianjun & Zhang, Guangqiu & Zhu, Qing & Guo, Meng & Chen, Lijuan, 2019. "A self-driven mechanical ventilated solar air collector: Design and experimental study," Energy, Elsevier, vol. 189(C).
More about this item
Keywords
nanofluids; solar energy; photothermal conversion efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8186-:d:696090. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.