IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922014660.html
   My bibliography  Save this article

A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells

Author

Listed:
  • Kazemian, Arash
  • Khatibi, Meysam
  • Ma, Tao
  • Peng, Jinqing
  • Hongxing, Yang

Abstract

In this work, a single unit called photovoltaic thermal with solar thermal collector enhancer has been developed, whose absorber plate is partially covered by photovoltaic cells. This design increases the photothermal energy conversion ratio and absorbed energy by the system, resulting in a higher thermal power, thermal exergy, and outflow temperature compared to a conventional photovoltaic thermal module. This research examines the impacts of different glazing arrangements on the system performance using a three-dimensional transient model to determine the most efficient design from energy and exergy viewpoints. Moreover, the effects of various parameters on system performance, such as tilt angle, azimuth angle, mass flow rate, and dust accumulation on the system surface, are discussed. Finally, a comparative study between the proposed system, the standalone solar thermal collector, and the standalone photovoltaic thermal system is carried out in terms of energy, exergy, and economics. Results indicate that the proposed system has 31.24 % greater overall power and 35.07 % shorter payback time than a conventional standalone unglazed photovoltaic thermal system when only its solar collector enhancer part is covered by glass.

Suggested Citation

  • Kazemian, Arash & Khatibi, Meysam & Ma, Tao & Peng, Jinqing & Hongxing, Yang, 2023. "A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014660
    DOI: 10.1016/j.apenergy.2022.120209
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922014660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120209?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hartmann, N. & Glueck, C. & Schmidt, F.P., 2011. "Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates," Renewable Energy, Elsevier, vol. 36(5), pages 1329-1338.
    2. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Integrated performance analysis of a space heating system assisted by photovoltaic/thermal collectors and ground source heat pump for hotel and office building types," Renewable Energy, Elsevier, vol. 169(C), pages 925-934.
    3. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    4. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    5. Salari, Ali & Hakkaki-Fard, Ali, 2019. "A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 135(C), pages 437-449.
    6. Michael, Jee Joe & Selvarasan, Iniyan & Goic, Ranko, 2016. "Fabrication, experimental study and testing of a novel photovoltaic module for photovoltaic thermal applications," Renewable Energy, Elsevier, vol. 90(C), pages 95-104.
    7. Tsogtbilegt Boldoo & Jeonggyun Ham & Eui Kim & Honghyun Cho, 2020. "Review of the Photothermal Energy Conversion Performance of Nanofluids, Their Applications, and Recent Advances," Energies, MDPI, vol. 13(21), pages 1-33, November.
    8. Hegazy, Adel A, 2001. "Effect of dust accumulation on solar transmittance through glass covers of plate-type collectors," Renewable Energy, Elsevier, vol. 22(4), pages 525-540.
    9. Yazdanifard, Farideh & Ebrahimnia-Bajestan, Ehsan & Ameri, Mehran, 2016. "Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime," Renewable Energy, Elsevier, vol. 99(C), pages 295-306.
    10. Han, Zhonghe & Liu, Kaixin & Li, Guiqiang & Zhao, Xudong & Shittu, Samson, 2021. "Electrical and thermal performance comparison between PVT-ST and PV-ST systems," Energy, Elsevier, vol. 237(C).
    11. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    12. Kazemian, Arash & Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints," Energy, Elsevier, vol. 162(C), pages 210-223.
    13. Kazemian, Arash & Salari, Ali & Hakkaki-Fard, Ali & Ma, Tao, 2019. "Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material," Applied Energy, Elsevier, vol. 238(C), pages 734-746.
    14. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xinglong & Wang, Zhenzhen & Zhao, Zhiyong & Liang, Shen & Liu, Zuyi & Zheng, Hongfei, 2024. "Simultaneous production of electricity and potable water underwater by integrating concentrating photovoltaic with air gap membrane distillation," Renewable Energy, Elsevier, vol. 226(C).
    2. Salari, Ali & Shakibi, Hamid & Soltani, Shohreh & Kazemian, Arash & Ma, Tao, 2024. "Optimization assessment and performance analysis of an ingenious hybrid parabolic trough collector: A machine learning approach," Applied Energy, Elsevier, vol. 353(PA).
    3. Yao, Haichen & Liu, Xianglei & Li, Jiawei & Luo, Qingyang & Tian, Yang & Xuan, Yimin, 2023. "Chloroplast-granum inspired phase change capsules accelerate energy storage of packed-bed thermal energy storage system," Energy, Elsevier, vol. 284(C).
    4. Li, Xinyi & Wang, Yifei & Yuan, Qibin & Bian, Qingfei & Simon, Terrence & Yang, Haibo & Wang, Qiuwang, 2024. "Thermal management of PV based on latent energy storage of composite phase change material: A system-level analysis with pore-scale model," Applied Energy, Elsevier, vol. 364(C).
    5. Kazemian, Arash & Khatibi, Meysam & Entezari, Soroush & Ma, Tao & Yang, Hongxing, 2023. "Efficient energy generation and thermal storage in a photovoltaic thermal system partially covered by solar cells and integrated with organic phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Kazemian, Arash & Ma, Tao & Hongxing, Yang, 2024. "Evaluation of various collector configurations for a photovoltaic thermal system to achieve high performance, low cost, and lightweight," Applied Energy, Elsevier, vol. 357(C).
    7. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Design and experimental analysis of a parallel-flow photovoltaic-thermal air collector with finned latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 217(C).
    8. Maadi, Seyed Reza & Sabzali, Hossein & Arabkoohsar, Ahmad, 2024. "Performance characterization of nano-enhanced PV/T systems in various cross-sections, extended flow turbulators, fins, and corrugated patterns," Renewable Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemian, Arash & Khatibi, Meysam & Entezari, Soroush & Ma, Tao & Yang, Hongxing, 2023. "Efficient energy generation and thermal storage in a photovoltaic thermal system partially covered by solar cells and integrated with organic phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Kazemian, Arash & Ma, Tao & Hongxing, Yang, 2024. "Evaluation of various collector configurations for a photovoltaic thermal system to achieve high performance, low cost, and lightweight," Applied Energy, Elsevier, vol. 357(C).
    3. Salari, Ali & Shakibi, Hamid & Soltani, Shohreh & Kazemian, Arash & Ma, Tao, 2024. "Optimization assessment and performance analysis of an ingenious hybrid parabolic trough collector: A machine learning approach," Applied Energy, Elsevier, vol. 353(PA).
    4. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    6. Salari, Ali & Shakibi, Hamid & Soleimanzade, Mohammad Amin & Sadrzadeh, Mohtada & Hakkaki-Fard, Ali, 2024. "Application of machine learning in evaluating and optimizing the hydrogen production performance of a solar-based electrolyzer system," Renewable Energy, Elsevier, vol. 220(C).
    7. Salari, Ali & Hakkaki-Fard, Ali, 2019. "A numerical study of dust deposition effects on photovoltaic modules and photovoltaic-thermal systems," Renewable Energy, Elsevier, vol. 135(C), pages 437-449.
    8. Salari, Ali & Parcheforosh, Ali & Hakkaki-Fard, Ali & Amadeh, Ali, 2020. "A numerical study on a photovoltaic thermal system integrated with a thermoelectric generator module," Renewable Energy, Elsevier, vol. 153(C), pages 1261-1271.
    9. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    11. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Zain Ul Abdin & Ahmed Rachid, 2021. "A Survey on Applications of Hybrid PV/T Panels," Energies, MDPI, vol. 14(4), pages 1-23, February.
    13. Cao, Yan & Sinaga, Nazaruddin & Pourhedayat, Samira & Dizaji, Hamed Sadighi, 2021. "Innovative integration of solar chimney ventilator, solar panel and phase change material; under real transient weather condition of Hong Kong through different months," Renewable Energy, Elsevier, vol. 174(C), pages 865-878.
    14. B, Prabhu & A, Valan Arasu & P, Gurusamy & A, Amala Mithin Minther Singh & T, Arunkumar, 2024. "Solar photovoltaic cooling using Paraffin phase change material: Comprehensive assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    15. Monjur Mourshed & Nahid Imtiaz Masuk & Huy Quoc Nguyen & Bahman Shabani, 2022. "An Experimental Approach to Energy and Exergy Analyses of a Hybrid PV/T System with Simultaneous Water and Air Cooling," Energies, MDPI, vol. 15(18), pages 1-17, September.
    16. Maadi, Seyed Reza & Navegi, Ali & Solomin, Evgeny & Ahn, Ho Seon & Wongwises, Somchai & Mahian, Omid, 2021. "Performance improvement of a photovoltaic-thermal system using a wavy-strip insert with and without nanofluid," Energy, Elsevier, vol. 234(C).
    17. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    18. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.
    19. Li, Jinpeng & Chen, Xiangjie & Li, Guiqiang, 2023. "Effect of separation wavelength on a novel solar-driven hybrid hydrogen production system (SDHPS) by solar full spectrum energy," Renewable Energy, Elsevier, vol. 215(C).
    20. Zhang, Chenyu & Wang, Ning & Yang, Qiguo & Xu, Hongtao & Qu, Zhiguo & Fang, Yuan, 2022. "Energy and exergy analysis of a switchable solar photovoltaic/thermal-phase change material system with thermal regulation strategies," Renewable Energy, Elsevier, vol. 196(C), pages 1392-1405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.