One-pot transformation of glucose into hydroxymethyl furfural in water over Pd decorated acidic ZrO2
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2021.11.046
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Singh, Omvir & Agrawal, Ankit & Dhiman, Neha & Vempatapu, Bhanu Prasad & Chiang, Ken & Tripathi, Shailendra & Sarkar, Bipul, 2021. "Production of renewable aromatics from jatropha oil over multifunctional ZnCo/ZSM-5 catalysts," Renewable Energy, Elsevier, vol. 179(C), pages 2124-2135.
- Yang, Fengli & Weng, Jushi & Ding, Jiajing & Zhao, Zhiyan & Qin, Lizhen & Xia, Feifei, 2020. "Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite," Renewable Energy, Elsevier, vol. 151(C), pages 829-836.
- Wu, Chongbei & Guo, Jingya & Zhang, Jifang & Zhao, Yanchun & Tian, Jianniao & Isimjan, Tayirjan Taylor & Yang, Xiulin, 2019. "Palladium nanoclusters decorated partially decomposed porous ZIF-67 polyhedron with ultrahigh catalytic activity and stability on hydrogen generation," Renewable Energy, Elsevier, vol. 136(C), pages 1064-1070.
- Jiang, Jingyun & Ding, Wentao & Li, Hao, 2021. "Promotional effect of F for Pd/HZSM-5 catalyst on selective HDO of biobased ketones," Renewable Energy, Elsevier, vol. 179(C), pages 1262-1270.
- Najafi Sarpiri, Jaleh & Najafi Chermahini, Alireza & Saraji, Mohammad & Shahvar, Ali, 2021. "Dehydration of carbohydrates into 5-hydroxymethylfurfural over vanadyl pyrophosphate catalysts," Renewable Energy, Elsevier, vol. 164(C), pages 11-22.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Shuai & Eberhardt, Thomas L. & Guo, Dayi & Feng, Junfeng & Pan, Hui, 2022. "Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system," Renewable Energy, Elsevier, vol. 190(C), pages 1-10.
- Yu, Yixuan & Liu, Huai & Zhang, Junhua & Zhang, Heng & Sun, Yong & Peng, Lincai, 2023. "Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 209(C), pages 453-461.
- Fang, Juan & Dong, Hao & Xu, Haimei, 2023. "The effect of Lewis acidity of tin loading siliceous MCM-41 on glucose conversion into 5-hydroxymethylfurfural," Renewable Energy, Elsevier, vol. 218(C).
- Yan, Kaiqi & Wang, Zhihao & Wang, Xiaobo & Xia, Shengpeng & Fan, Yuyang & Zhao, Kun & Zhao, Zengli & Zheng, Anqing, 2024. "Efficient catalytic conversion of cellulose into 5-hydroxymethylfurfural by modified cerium zirconium phosphates in a biphasic system," Renewable Energy, Elsevier, vol. 225(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yin, Zhu & Wu, Fengzhen & He, Changfu & Tang, Lirong & Chen, Yandan & Lin, Guanfeng & Huang, Biao & Chen, Jing & Lu, Beili, 2023. "Renewable biomass-derived, P-doped granular activated carbon for efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran: Insights into the crucial role of P and N functionality," Renewable Energy, Elsevier, vol. 219(P1).
- Mankar, Akshay R. & Pandey, Ashish & Modak, Arindam & Pant, K.K., 2021. "Microwave mediated enhanced production of 5-hydroxymethylfurfural using choline chloride-based eutectic mixture as sustainable catalyst," Renewable Energy, Elsevier, vol. 177(C), pages 643-651.
- Li, Tong & Li, Hao & Li, Chunli, 2022. "Self-support semi-hollow carbon nanosphere supported palladium catalyst for biomass upgrading," Renewable Energy, Elsevier, vol. 191(C), pages 101-109.
- Wang, Shuai & Eberhardt, Thomas L. & Guo, Dayi & Feng, Junfeng & Pan, Hui, 2022. "Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system," Renewable Energy, Elsevier, vol. 190(C), pages 1-10.
- Yu, Yixuan & Liu, Huai & Zhang, Junhua & Zhang, Heng & Sun, Yong & Peng, Lincai, 2023. "Highly efficient, amorphous bimetal Ni-Fe borides-catalyzed hydrogenolysis of 5-hydroxymethylfurfural into 2,5-dimethylfuran," Renewable Energy, Elsevier, vol. 209(C), pages 453-461.
- Cai, Bo & Kang, Rui & Guo, Dayi & Feng, Junfeng & Ma, Tianyi & Pan, Hui, 2022. "An eco-friendly acidic catalyst phosphorus-doped graphitic carbon nitride for efficient conversion of fructose to 5-Hydroxymethylfurfural," Renewable Energy, Elsevier, vol. 199(C), pages 1629-1638.
- Fang, Juan & Dong, Hao & Xu, Haimei, 2023. "The effect of Lewis acidity of tin loading siliceous MCM-41 on glucose conversion into 5-hydroxymethylfurfural," Renewable Energy, Elsevier, vol. 218(C).
- Hafizi, Hamid & Walker, Gavin & Collins, Maurice N., 2022. "Efficient production of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and carbohydrates over lewis/brønsted hybrid magnetic dendritic fibrous silica core-shell catalyst," Renewable Energy, Elsevier, vol. 183(C), pages 459-471.
- Zhu, Zhe & Sun, Zhiqiang & Yu, Xiaofeng & Zhang, Shuo & Cao, Xinxin & Liu, Xuliang & Guo, Ziwen & Rosendahl, Lasse & Chen, Guanyi, 2024. "Valorization of low heavy metal-accumulating plants through catalytic hydrothermal liquefaction with attapulgite: Product characterization and migration behavior of heavy metals," Energy, Elsevier, vol. 295(C).
- Karimi, Sabah & Seidi, Farzad & Niakan, Mahsa & Shekaari, Hemayat & Masteri-Farahani, Majid, 2021. "Catalytic dehydration of fructose into 5-hydroxymethylfurfural by propyl sulfonic acid functionalized magnetic graphene oxide nanocomposite," Renewable Energy, Elsevier, vol. 180(C), pages 132-139.
- Ozay, Hava & Ilgin, Pinar & Sezgintürk, Mustafa Kemal & Ozay, Ozgur, 2020. "Pd nanoreactors with excellent catalytic activity supported in p(SPA) hydrogel networks for hydrogen production from ethylenediamine bisborane," Renewable Energy, Elsevier, vol. 155(C), pages 500-512.
- Tang, Hongbiao & Lin, Jiayu & Cao, Yang & Jibran, Khalil & Li, Jin, 2022. "Influence of NiMoP phase on hydrodeoxygenation pathways of jatropha oil," Energy, Elsevier, vol. 243(C).
- Kumar, Komal & Pathak, Shailesh & Upadhyayula, Sreedevi, 2021. "Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- A thermodynamic and kinetic analysis," Renewable Energy, Elsevier, vol. 167(C), pages 282-293.
- Helder X. Nunes & Diogo L. Silva & Carmen M. Rangel & Alexandra M. F. R. Pinto, 2021. "Rehydrogenation of Sodium Borates to Close the NaBH 4 -H 2 Cycle: A Review," Energies, MDPI, vol. 14(12), pages 1-28, June.
- Hu, Lei & Wu, Zhen & Jiang, Yetao & Wang, Xiaoyu & He, Aiyong & Song, Jie & Xu, Jiming & Zhou, Shouyong & Zhao, Yijiang & Xu, Jiaxing, 2020. "Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Zhang, Hongming & Xu, Guochang & Zhang, Lu & Wang, Wenfeng & Miao, Wenkang & Chen, Kangli & Cheng, Lina & Li, Yuan & Han, Shumin, 2020. "Ultrafine cobalt nanoparticles supported on carbon nanospheres for hydrolysis of sodium borohydride," Renewable Energy, Elsevier, vol. 162(C), pages 345-354.
- Yan, Kaiqi & Wang, Zhihao & Wang, Xiaobo & Xia, Shengpeng & Fan, Yuyang & Zhao, Kun & Zhao, Zengli & Zheng, Anqing, 2024. "Efficient catalytic conversion of cellulose into 5-hydroxymethylfurfural by modified cerium zirconium phosphates in a biphasic system," Renewable Energy, Elsevier, vol. 225(C).
More about this item
Keywords
Glucose conversion; One-pot transformation; Hydroxymethyl furfural; Pd nanoparticle; Zirconium oxide;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:183:y:2022:i:c:p:791-801. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.