IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123013034.html
   My bibliography  Save this article

Renewable biomass-derived, P-doped granular activated carbon for efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran: Insights into the crucial role of P and N functionality

Author

Listed:
  • Yin, Zhu
  • Wu, Fengzhen
  • He, Changfu
  • Tang, Lirong
  • Chen, Yandan
  • Lin, Guanfeng
  • Huang, Biao
  • Chen, Jing
  • Lu, Beili

Abstract

Heteroatom-doped carbon materials for eco-friendly metal-free catalysis have gained increasing attention, but they nevertheless face technological challenges relating to the difficult recycling and high cost. In this work, P-doped granular activated carbons with intrinsic N functionality (PN-GAC-T) were successfully fabricated from low-cost and sustainable waste peanut shells using a simple self-bonding strategy assisted by phosphoric acid. The as-prepared PN-GAC-T were found to have abundant N, P functional groups and large specific surface areas, making them potentially efficient metal-free catalysts for the selective oxidation of 5-hydroxymethylfurfural (HMF). Catalytic results showed that an excellent HMF conversion (98.4%) and 2,5-diformylfuran (DFF) selectivity (99.7%) could be achieved under mild conditions via employing PN-GAC-800 as a catalyst. The good catalytic performance of PN-GAC-800 is highly reliant on the synergistic effect between doped P and intrinsic N functionalities as verified by the control experiments. Furthermore, the density functional theory (DFT) calculations demonstrated that the introduction of both P and N functional groups would aid in the activation of HMF and the improvement of oxygen adsorption capability. This work has emphasized the possibility of high-value exploitation of biomass waste, and it is predicted to provide new inspiration for the development of readily recyclable heteroatom-doped carbon catalysts.

Suggested Citation

  • Yin, Zhu & Wu, Fengzhen & He, Changfu & Tang, Lirong & Chen, Yandan & Lin, Guanfeng & Huang, Biao & Chen, Jing & Lu, Beili, 2023. "Renewable biomass-derived, P-doped granular activated carbon for efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran: Insights into the crucial role of P and N functionality," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013034
    DOI: 10.1016/j.renene.2023.119388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123013034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Fengli & Weng, Jushi & Ding, Jiajing & Zhao, Zhiyan & Qin, Lizhen & Xia, Feifei, 2020. "Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite," Renewable Energy, Elsevier, vol. 151(C), pages 829-836.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sui, Haiqing & Chen, Jianfeng & Cheng, Wei & Zhu, Youjian & Zhang, Wennan & Hu, Junhao & Jiang, Hao & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of oxidative torrefaction on fuel and pelletizing properties of agricultural biomass in comparison with non-oxidative torrefaction," Renewable Energy, Elsevier, vol. 226(C).
    2. Nguyen, Long Thanh & Doan, Vinh Thanh Chau & Nguyen, Trinh Hao & Phan, Ha Bich & Pham, Viet Van & Dang, Chinh Van & Tran, Phuong Hoang, 2024. "One-pot aerobic conversion of fructose to 2,5-diformylfuran using silver-decorated carbon materials," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Zhe & Sun, Zhiqiang & Yu, Xiaofeng & Zhang, Shuo & Cao, Xinxin & Liu, Xuliang & Guo, Ziwen & Rosendahl, Lasse & Chen, Guanyi, 2024. "Valorization of low heavy metal-accumulating plants through catalytic hydrothermal liquefaction with attapulgite: Product characterization and migration behavior of heavy metals," Energy, Elsevier, vol. 295(C).
    2. Yan, Kaiqi & Wang, Zhihao & Wang, Xiaobo & Xia, Shengpeng & Fan, Yuyang & Zhao, Kun & Zhao, Zengli & Zheng, Anqing, 2024. "Efficient catalytic conversion of cellulose into 5-hydroxymethylfurfural by modified cerium zirconium phosphates in a biphasic system," Renewable Energy, Elsevier, vol. 225(C).
    3. Wang, Shuai & Eberhardt, Thomas L. & Guo, Dayi & Feng, Junfeng & Pan, Hui, 2022. "Efficient conversion of glucose into 5-HMF catalyzed by lignin-derived mesoporous carbon solid acid in a biphasic system," Renewable Energy, Elsevier, vol. 190(C), pages 1-10.
    4. Goyal, Reena & Abraham, B. Moses & Singh, Omvir & Sameer, Siddharth & Bal, Rajaram & Mondal, Prasenjit, 2022. "One-pot transformation of glucose into hydroxymethyl furfural in water over Pd decorated acidic ZrO2," Renewable Energy, Elsevier, vol. 183(C), pages 791-801.
    5. Hu, Lei & Wu, Zhen & Jiang, Yetao & Wang, Xiaoyu & He, Aiyong & Song, Jie & Xu, Jiming & Zhou, Shouyong & Zhao, Yijiang & Xu, Jiaxing, 2020. "Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123013034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.